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1.1.2 Eötvös Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Deflection of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Newton–Galilei Space–Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Free Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Affine Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Curvilinear Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Curves and Tangential Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.3 Affine Connection of a Manifold . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.4 The Metric Affine Connection . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Cartan–Friedrichs Space–Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Curvature Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.8 The Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.8.1 Galilei Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8.2 Geodesic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.8.3 Local Inertial Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.8.4 Formulation of the Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9 Parallel Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Relativistic Particle Dynamics
in Gravitational Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 Relativistic Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Geometry of Minkowski Space–Time . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



vi Contents

2.3 Particle Dynamics in General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Local Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.1 General Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.2 Proper Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.3 Radar Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.4 Simultaneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.5 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.6 Spectra and Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Stationary Space–Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.1 The 3-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.2 Free Falls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.3 The Gravitoelectric and Gravitomagnetic Force . . . . . . . . . . . 59
2.5.4 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5.5 Gravitational Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Isometry (A Mathematical Intermezzo) . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.1 Rotation in EEE

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.2 Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.3 Lie Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.6.4 Killing Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.7 Rotationally Symmetric Space–Times . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.7.1 Rotation Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.7.2 Space–Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.7.3 Geodesic Equation in the Static Case . . . . . . . . . . . . . . . . . . . . 75

2.8 Asymptotically Flat Space–Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.1 Eddington–Robertson Expansion . . . . . . . . . . . . . . . . . . . . . . . 77
2.8.2 Energy and Momentum Balance . . . . . . . . . . . . . . . . . . . . . . . . 78

2.9 Motion of Planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.9.1 Comparison with Newton’s Theory . . . . . . . . . . . . . . . . . . . . . 82
2.9.2 Perihelion Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.10 Light Signals in the Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.10.1 Deflection of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.10.2 Radar Echo Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3 Field Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.1 Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1.1 Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.1.2 The Maxwell Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.1.3 The Stress-Energy Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.2 Variation Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2.1 Transformation Properties of Tensor Fields . . . . . . . . . . . . . . . 100
3.2.2 The Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.3 Variation Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2.4 Field Equations of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents vii

3.3 Covariant Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.1 Definition of the Covariant Derivative . . . . . . . . . . . . . . . . . . . 106
3.3.2 Direct Expression for the Covariant Derivative . . . . . . . . . . . . 107
3.3.3 Algebraic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.4 Metric Affine Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4 The Stress-Energy Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4.3 Interpretation of the Divergence Formula . . . . . . . . . . . . . . . . 118
3.4.4 Ideal Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Dynamics of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.1 The Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 The Einstein Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.1 Properties of the Curvature Tensor . . . . . . . . . . . . . . . . . . . . . . 129
4.3 General Covariance of the Einstein Equations . . . . . . . . . . . . . . . . . . . 131
4.4 Weak Gravitational Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.1 Auxiliary Metrics and Gauge Transformations . . . . . . . . . . . . 135
4.4.2 Affine Connection and Curvature . . . . . . . . . . . . . . . . . . . . . . . 136
4.4.3 The Cosmological Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.4.4 The Linearized Einstein Equations . . . . . . . . . . . . . . . . . . . . . . 141
4.4.5 Stationary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.4.6 Gravitomagnetic Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4.7 Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.4.8 Measurable Properties of Plane Waves . . . . . . . . . . . . . . . . . . 152

4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5 Cosmological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.1 Homogeneous Isotropic 3-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.1.1 The Cosmological Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.1.2 Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.1.3 The Sphere S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.1.4 The Pseudo-sphere P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Robertson–Walker Space-Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.2 Cosmic Rest System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2.3 Cosmological Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2.4 Cosmological Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.2.5 Einstein Tensor of the Robertson–Walker Space-Time . . . . . 171

5.3 Cosmic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3.1 Friedmann–Lemaı̂tre Equations . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3.2 Cosmic Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



viii Contents

5.3.3 Linear Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.4 Parameterization of Physically Distinct Models . . . . . . . . . . . . . . . . . 176

5.4.1 Qualitative Discussion of the Dynamics . . . . . . . . . . . . . . . . . 176
5.4.2 Density Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.4.3 The Ω-Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.4.4 Luminosity Distance and the Measurement of Λ . . . . . . . . . . 187
5.4.5 The Friedmann Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.5 Space-Times with Maximal Symmetry (10 Killing Fields) . . . . . . . . 191
5.5.1 Minkowski Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.5.2 de Sitter Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.5.3 Anti-de Sitter Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.6 The Early Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.6.1 Horizon Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.6.2 Flatness Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.6.3 Entropy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.6.4 Cosmic Inflation: Orders of Magnitude . . . . . . . . . . . . . . . . . . 204
5.6.5 Quantum Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6 Rotationally Symmetric Models of Stars . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.1 Hydrostatic Equilibrium of Non-rotating Stars . . . . . . . . . . . . . . . . . . 209

6.1.1 Equations of the Hydrostatic Equilibrium . . . . . . . . . . . . . . . . 209
6.1.2 Conditions at the Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.1.3 Conditions at the Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.1.4 The Metric Outside the Star . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.1.5 Comparison to Newtonian Gravity . . . . . . . . . . . . . . . . . . . . . . 213
6.1.6 Mass Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.1.7 Junction Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.2 Properties of the Schwarzschild Solution . . . . . . . . . . . . . . . . . . . . . . . 218
6.2.1 The Birkhoff Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.2.2 Radial Light Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.2.3 Eddington–Finkelstein Coordinates . . . . . . . . . . . . . . . . . . . . . 220
6.2.4 The Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.3 Oppenheimer–Snyder Collapse Model . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.3.1 The Interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.3.2 The Outside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.3.3 The Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.3.4 Radial Light-Like Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234



Contents ix

7 Stationary Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.1 Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

7.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.1.2 Tangential Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.1.3 Induced Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.1.4 Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.1.5 Classification of Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . 239

7.2 Rotating Charged Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
7.2.1 First Look at Kerr–Newman Space–Time . . . . . . . . . . . . . . . . 243

7.3 Dynamics of Charged Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.3.1 Integrals of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.3.2 The Equatorial Plane and the Axes of Symmetry . . . . . . . . . . 252

7.4 Energetics of Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.4.1 Available Energy of a Black Hole . . . . . . . . . . . . . . . . . . . . . . . 255
7.4.2 Energy of Particles in the Field of a Black Hole . . . . . . . . . . . 262

7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275



Introduction

The contemporary theoretical physics consists, by and large, of two independent
parts. The first is the quantum theory describing the micro-world of elementary par-
ticles, the second is the theory of gravity that concerns properties of macroscopic
systems such as stars, galaxies, and the universe. The relativistic theory of grav-
itation which is known as general relativity was created, at the beginning of the
last century, by more or less a single man from pure idea combinations and bold
guessing. The task was to “marry” the theory of gravity with the theory of special
relativity. The first attempts were aimed at considering the gravitational potential as
a field in Minkowski space–time. All those attempts failed; it took 10 years until
Einstein finally solved the problem. The difficulty was that the old theory of gravity
as well as the young theory of special relativity had to be modified. The next 50
years were difficult for this theory because its experimental basis remained weak
and its complicated mathematical structure was not well understood. However, in
the subsequent period this theory flourished. Thanks to improvements in the tech-
nology and to the big progress in the methods of astronomical observations, the
amount of observable facts to which general relativity is applicable was consider-
ably enlarged. This is why general relativity is, today, one of the best experimentally
tested theories while many competing theories could be disproved. Also the concep-
tual and mathematical fundamentals are better understood now. Nowadays general
relativity serves as one of the fundamental theories for modern astrophysics and
space research. More and more people get interested in its fascinating results.

General relativity is a very fruitful theory; it predicted many new and surprising
effects. The most famous examples are:

Gravitomagnetic phenomena The origin of gravity is not mass alone but every
form of energy, momentum, angular momentum, and pressure, too. Several compo-
nents of the relativistic gravitational field are similar to those of the electromagnetic
field. In particular the motion of mass creates the components that are called grav-
itomagnetic field. This phenomenon can be observed for instance around rotating
stars. A satellite orbiting in the opposite direction to that of the star rotation is less
attracted than a satellite orbiting in the same direction.

xi
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Gravitational radiation In Newton’s theory the gravitational potential Φ(t,r) at
the time t is determined by the mass density ρ(t,r) given at the same time through
the Poisson equation

ΔΦ= 4πGρ .

Hence a change of the density ρ manifests itself immediately in the form of the
gravitational potential all over the equal-time surface. The field is, however, mea-
surable; the information about the movement of the source therefore propagates
infinitely fast in the gravitational field. In a relativistic theory only the speed of light
can be considered for the propagation of signals. The gravitational signals, which
carry energy and information with finite speed, are called gravitational waves.

Dynamical cosmology The solution of the Einstein equations that describe cosmol-
ogy are not static. The first were found by Friedmann. They mostly start in a singular
point where all matter is brought together: in the so-called Big Bang. This means:
our universe is the remnant of a gigantic explosion. The Big Bang cosmology the-
ory is a very successful one. Moreover, the gravitational field is characterized by two
coupling constants: not only Newton’s constant but also the so-called cosmological
constant. Only today do we start to understand the role of the latter.

Black holes Let us consider a source of mass M and gravitational potential Φ(r) =
−GMr−1. In this field a force of attraction that can perform work acts on a particle
of mass μ . If we move the particle from r =∞ to a finite distance r from the source,
in principle the work A(r) = μΦ(∞)−μΦ(r) =−μΦ(r) = GMμr−1 can be applied.
At some value of radius, it is possible to obtain the full rest energy of the particle;
this radius is given by the equation

GMμr−1 = μc2 .

It is called the gravitational radius of the mass M,

RG :=
G
c2 M . (1)

The gravitational radius appears also in another estimation. Let us calculate the
distance from our spherically symmetric source, where the escape velocity admits
the value v. The escape velocity is the velocity corresponding to the circular orbit at
a given radius. The orbit satisfies the equation

G
Mμ
r2 =

μv2

r

(gravitational centripetal force = centrifugal force). Then the following holds for the
distance r that we want to determine:

r =
G
v2 M ,

and for v = c we have r = RG. Hence, no energy- or information-carrying signal
coming from below the gravitational radius can reach us. The objects of the size
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given by the gravitational radius are called black holes. The assumption that black
holes exist in the center of most galaxies and in other star systems leads to a wonder-
ful order and a good understanding for a big class of apparently mysterious objects
in the cosmos.

The two pillars of general relativity are the geometric interpretation of gravitation
and the Einstein equations. In the first part of these Notes (Chaps. 1, 2, 3 and 4), the
geometrization is carefully motivated and the necessary mathematical tools from
differential geometry are introduced. The second part (Chaps. 4, 5, 6 and 7) contains
the most important applications: gravitomagnetism, gravitational waves, cosmology,
gravitational collapse, and black holes. There is plenty of mostly easy exercises
throughout. The Notes focus on those ideas that are most frequently used in the
contemporary astrophysics, although no astrophysics worth mentioning is explicitly
presented. At the points, where such information could be felt to be missing, other
books or papers are mentioned.

Over the many years an earlier version of these Notes was written, students
helped me with their questions during the lectures as well as with advice on phras-
ing and grammar of the German language. In particular, I would like to mention
Martin Schön, Matthias Zürcher, and Matthias Peter Burkhardt. The Notes also
gained a lot from discussions with J. Bičák, J. Ehlers, G. W. Gibbons, S. W. Hawking,
K. V. Kuchař, W. Kundt, and B. G. Schmidt. The present text is based on a transla-
tion of the German version by two young researchers, Dr. Frank Meyer and Dr. Jan
Metzger—their thorough work is gratefully acknowledged.



Chapter 1
Geometrization of Mechanics

1.1 Selected Facts

Let us first look at what is known about the nature of gravitation from observations
and experiments. We want to stay in the framework of Newton’s notions of space,
time, and dynamics, and will mention only those aspects that are of direct impor-
tance for the development of general relativity.

1.1.1 The Cavendish Experiment

In 1789 H. Cavendish measured the force of attraction between two massive spheres
using a torsion balance. The result was in accordance with

FG = −G
m1m2

r2 ,

where m1 and m2 denote the masses, r the radius, and where G is Newton’s constant.
In this way, Newton’s constant was measured. The measurement has been improved
several times since then; a more accurate value and the account of the corresponding
experiments can be found in [1, 2, 3]. For us it will be sufficient to remember the
value

G ≈ 10−10 Nkg−2 m2 .

The gravitational law is formally analogue to the Coulomb law

FC =
1

4πε0

q1q2

r2 ,

where q1 and q2 are the charges and ε0 is the dielectric constant for vacuum:

1
4πε0

≈ 1010 NC−2 m2 .

Hájı́ček, P.: Geometrization of Mechanics. Lect. Notes Phys. 750, 1–37 (2008)
DOI 10.1007/978-3-540-78659-7 1 c© Springer-Verlag Berlin Heidelberg 2008
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Differences:

1. The sign. Two masses attract each other, two identical charges repel. This is why
we seldom find accumulations of electric charges in nature, whereas high con-
centrations of mass are absolutely normal (gravitational instability, gravitational
collapse).

2. The gravitational “charge” is the mass, which is positive for all bodies. This leads
to the so-called universality of gravitation. It acts on all matter and is produced
by all matter.

3. Comparison of the two forces for two protons:

FG

FC
≈−10−36 .

Thus, gravitation seems to be negligible in the world of elementary particles.

1.1.2 Eötvös Experiment

Another important difference to electrodynamics is that the mass in physics not
only takes the role of the gravitational charge (gravitational mass), but also appears
in Newton’s second law as the so-called inertial mass:

F = ma .

At first glance, this property of the mass has nothing to do with gravitation and is
measured in a completely different way. We can actually only talk of the propor-
tionality of the inertial and the gravitational mass of one and the same body. The
universal coefficient of proportionality depends on the choice of units and can be
reduced to 1.

How well is this proportionality tested experimentally? The first time R. Eötvös
(1889, 1922) undertook such measurements (1 : 2×108). More recent experiments
are discussed in [1, 2, 3]. These experiments are fantastically accurate (1 : 1012).

From this proportionality it follows that trajectories of bodies that are falling in a
gravitational field depend on the field only, and not on the body. This is because the
acceleration of the body is inversely proportional to its mass, whereas the force is
directly proportional. The motion in a gravitational field is hence a lot simpler than,
for example, in an electrostatic field. In the first case the field, the initial point, and
the initial speed fully determine the movement. In the second case we have to know
in addition the relation q/m of the charge to the mass of the test particle.

1.1.3 Deflection of Light

Everything that was said so far is only valid for massive bodies. How do photons
react to the gravitational field? They are deflected by the field, much as happens to
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massive bodies. The existing observations concern the field of the Sun; the photons
move tangentially to the surface and the deflection angle δ is measured. Very precise
measurements were done with radio signals coming from a pair of quasars (for
details, see [1, 2, 3]). The result is

δ ≈ 1.77′′ .

Electromagnetic waves are affected by the gravitational field also in another way.

1.1.4 Redshift

If a photon ascends in a homogeneous gravitational field it must lose energy. Oth-
erwise it would be possible to build a perpetuum mobile. It is possible to show that
the redshift of a photon that ascends up to a height l must admit the value glc−2. An
adequate experiment was first done by Pound, Rebka and Snider in 1960 (for dis-
cussion, see [1, 2, 3]). In this experiment, photons ascended to a height of 22.5 m.
Then the frequency was measured by means of the Mössbauer effect.

1.2 Equivalence Principle

The underlying idea of general relativity is Einstein’s answer to the question of the
origin of the proportionality between inertial and gravitational masses. He noticed
that the same proportionality holds for the so-called apparent forces. Centrifugal
force, Coriolis force, etc., are all proportional to the inertial mass of the sample.
The assumption that the gravitational force is an apparent force1 (i.e., that it is due
to an accelerated motion of the reference system) is—roughly speaking—what is
known as the so-called equivalence principle (the equivalence of gravitation and
phenomena in accelerated systems).

Let us consider for simplicity a linearly accelerated system. Its axes x,y, and z
move with the acceleration g with respect to the axes x̄, ȳ, and z̄:

x = x̄ , y = ȳ , z = z̄− 1
2

gt2 . (1.1)

Imagine a physicist who is locked in a box that is accelerated in such a way. He can-
not see, for instance, that a force outside the box is responsible for his acceleration.
But he can investigate the phenomena inside the box. This is the so-called Einstein
box (Gedankenexperiment).

The observer sees that all objects fall to the ground (in direction of the negative
z-axis) with an acceleration g, which is independent of the object’s mass and char-
acteristics. If he wants to interpret this effect as coming from a force �F he must set

1 Such “explicit” formulation can also be found in [4].
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�F = m�g ,

where�g is a vector with components (0,0,−g). Here,�g may be called the “intensity
of the gravitational field” and m the “gravitational charge of the test body”.

How does light react to this gravitation? A light ray with the trajectory

x̄ = ct , ȳ = 0 , z̄ = 0

with respect to (x̄, ȳ, z̄) moves in the frame (x,y,z) according to the transformation
(1.1) as follows

x = ct , y = 0 , z = −1
2

gt2 .

Hence, it reveals a deflection in the direction of the gravitational acceleration.
Do we observe a redshift also if the light moves from the bottom of the box

(z = 0) to the top (z = l)? Yes, and it is possible to show (exercise) that the corre-
sponding Doppler effect leads to a redshift given by

Δλ
λ

= glc−2 .

We have found an explanation for the redshift.
Does this mean that the gravitation at the Earth’s surface can be explained by an

acceleration of this surface in the direction away from the Earth’s center? Then also
all distances at the Earth’s surface have to grow with the same acceleration, don’t
they? This would be a paradox.

This paradox, however, does not follow by assuming only that the gravitational
force is an apparent force. It results rather from the combination of this assumption
with the Newtonian picture of space and time. It is even possible to show exactly
and explicitly how the assumption that gravitation is an apparent force changes the
picture of the space–time geometry, in such a way that a specific curvature of space–
time appears.

In this part of the lecture we want to introduce the necessary geometric notions
and properties. We will work directly with dynamics—we geometrize dynamics
so to speak—so that geometry takes on a physical meaning. Previous knowledge
about differential geometry is not assumed. In this way both the relevant geometric
quantities and facts and the central idea of general relativity will be introduced based
on known material from non-relativistic dynamics.

1.3 Newton–Galilei Space–Time

It is helpful to bring together the three-dimensional space and the one-dimensional
time in a four-dimensional construction, the so-called space–time. This step is es-
sential for the geometrization. We now want to translate the Newtonian picture of
time and space in postulates about this space–time (which we will denote in the
following by M ).
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Postulate 1.1 On M ×M a function ΔT : M ×M �→ R is defined, which is called
time distance. Its properties are:

1. ΔT (p,q) = −ΔT (q, p), for all p and q,
2. ΔT (p,q)+ΔT (q,r) = ΔT (p,r), for all p, q, and r.

It follows that ΔT (p, p) = 0 for all p. The time distance is to be measured with an
Newtonian ideal clock.

We can then define a time function T : M �→ R by choosing an event p0 and set

T (q) := ΔT (p0,q) .

Two different time functions can only differ by a constant, which is equal to
ΔT (p1, p2) if the two time functions are related to the two events p1 and p2.

Also the future (or the past) of an event p can be defined as {q ∈ M |ΔT (p,q) >
(<)0}. More interesting is the definition of simultaneity: two events p and q are
simultaneous if ΔT (p,q) = 0. This is an equivalence relation and this way M is
divided into disjoint subsets—equivalence classes. These subsets are called simul-
taneity surfaces and they indeed form hypersurfaces in M . They represent the well-
known absolute simultaneity of Newtonian physics.

Postulate 1.2 Every simultaneity surface R carries the structure of Euclidean space.
Let V 3 be the three-dimensional vector space over the real numbers with the scalar
product (·, ·); then

1. for every R a map E : R×R �→V 3 is given, which we denote by E(p,q) = q− p ∈
V 3. We have

2. (p−q) = −(q− p),
3. (p−q)+(q− r) = (p− r),
4. let p be fixed in R. Then the map q− p : R �→V 3, which maps q to V 3, is bijective

for every p.

This structure defines a distance D(p,q) for any two simultaneous events p and q:

D(p,q) :=
√

(p−q, p−q) ,

which can be measured by measuring rods.
A general reference frame in M is given by an event p0 (initial time), one event

O(t) (the origin), and an orthonormal triad �ek(t) for each simultaneity surface cor-
responding to the value t of the time function determined by p0. It is then possible
to attribute to every event p four numbers (x0,x1,x2,x3), where x0 = ΔT (p0, p) and
numbers x1,x2,x3 are defined by:

p−O(t) =∑
k

xk�ek(t) .

On the other hand, the four numbers (x0,x1,x2,x3), together with a general reference
frame, determine exactly one event in M . The relation between the coordinates
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(x0,x1,x2,x3) and (y0,y1,y2,y3) of an event in two different reference frames is
given by four invertible functions of four variables.

In Newtonian physics the so-called free motion plays a particular role: it serves
to define an inertial frame. This is a reference frame with the property that every
trajectory of a free motion admits, in the inertial frame, the form

xμ = vμ λ +bμ , μ = 0,1,2,3 , (1.2)

where λ is the curve parameter. The two 4-vectors vμ and bμ are defined by the free
motion (up to affine reparameterizations).

Postulate 1.3 There exists at least one inertial frame.

1.4 Free Motion

Sometimes free motion is defined by the fact that it looks uniform and linear in an
inertial frame. To avoid a circular definition we assume that a dynamical definition
of free motion is possible. This means that all possible forces are known and can be
eliminated. For instance, electromagnetic forces are switched off by allowing only
test bodies whose electric and magnetic multipoles vanish. Contact forces such as
friction, air resistance, etc., are eliminated by using contact-free test bodies.

Let us study (1.2) in more detail:

1. We see that one and the same free motion can have different representations of
type (1.2). What is important is only the path, i.e., the set of points in M , and not
the values of the parameter λ . The choice of this parameter is arbitrary, restricted
only by the condition that (1.2) has to be linear. In this way, λ is determined up
to an affine transformation:

λ �→ λ ′ = αλ +β , α �= 0 .

λ is called an affine parameter. The arbitrariness we get is the prize for treating
the time and the spatial coordinates in a symmetric way.

2. Equation (1.2) is equivalent to four differential equations:

d2xμ

dλ 2 = 0 , ∀μ . (1.3)

Every solution xμ(λ ) admits the form (1.2), and four arbitrary functions of the
form (1.2) solve the system (1.3).

The importance of free motions is that it has a different description with respect to
an inertial frame than with respect to a non-inertial frame. Hence we can distinguish
these two classes of reference systems. How does the free motion look in an arbitrary
reference frame?

Let us consider an inertial frame K̄ with coordinates x̄μ and a non-inertial frame
K with xμ . The transformation between these two coordinate systems is given in
general by



1.5 Affine Connection 7

x̄0 = x0 + τ , x̄k =∑
l

Okl(t)
[
xk − rk(t)

]
,

where τ is a real number, Okl(t) is a time-independent orthogonal matrix, and rk(t)
is a time-dependent 3-tuple. This follows from the definition of a general reference
system given in the previous section. We want to write the transformations in short-
hand notation:

x̄μ = x̄μ
(
x0, . . . ,x3) .

For the curve xμ(λ ) of a free motion we have

x̄μ(λ ) = x̄μ
(
x0(λ ), . . . ,x3(λ )

)
.

If we insert this relation for x̄μ(λ ) in (1.3), we obtain

ẍμ +
3

∑
ρ=0

3

∑
σ=0
Γμρσ ẋρ ẋσ = 0 , (1.4)

where

Γμρσ =
3

∑
ν=0

∂xμ

∂ x̄ν
∂ 2x̄ν

∂xρ∂xσ
.

It is easy to show that the components of Γμρσ are independent of the inertial
frame K̄. The coefficients Γμρσ will play an important role in the following. It is pos-
sible to show that they are connected with the so-called apparent forces (exercise).
Summarizing: for inertial frame the Γμρσ are zero, not for non-inertial frame.

The differential equation (1.4) of free motions also has a formal mathematical
aspect. Its coefficients Γ define a geometric object, a so-called affine connection [5].
The affine connection plays an important role in many fields of mathematics and
modern theoretical physics. For instance the so-called gauge fields or Yang–Mills
fields [6] are affine connections.

As geometrical structures of Newtonian space–time, we have all together

1. absolute time distance in space–time (determined by the ideal clock),
2. distances and angles in the simultaneity surfaces (determined by the measuring

rods),
3. affine connection in space–time (determined by the free motions).

In the next section we want to look at the affine connection in more detail.

1.5 Affine Connection

1.5.1 Curvilinear Coordinates

The general reference frames of Newton’s theory are examples of curvilinear coor-
dinates since the coordinate lines xk = const, k = 1,2,3 are not straight lines. The
transformation between two systems of curvilinear coordinates is not linear. The
non-linearity of the allowed coordinate transformations is the most important new
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property. So far we had Newton’s theory based on Galilei transformations and the
theory of relativity, which is controlled by Poincaré transformations. These theo-
ries are linear. At this point we start to leave behind the well-known area of linear
theories.

Another example: the surface of a sphere, with the spheric coordinates ϑ and ϕ .
If ϑ and ϕ are contained in the intervals

0 < ϑ < π , 0 < ϕ < 2π , (1.5)

the whole surface of the sphere is covered, except for the closed segment

0 ≤ ϑ ≤ π , ϕ = 0 . (1.6)

As soon as we try to cover more than this, some points on the surface of the sphere
get several pairs of coordinates: the pole ϑ = 0, for instance, allows any value for
ϕ , etc. It is known that the surface of the sphere cannot be fully covered using one
coordinate system only, but it can be covered using two “coordinate charts” {ϑ1,ϕ1}
and {ϑ2,ϕ2}, where the corresponding segments (1.6) are not allowed to overlap.
We are thus naturally led to the concept of manifolds.

Definition 1 A differentiable n-manifold is a topological space M and a family
{Ui} of open subsets which cover M :

M =
⋃

i

Ui .

For each subset Ui, there exists a homeomorphism (a continuous bijection with con-
tinuous inverse) hi : Ui �→ R

n. The pair (Ui,hi) is called a coordinate chart. If two
coordinate charts overlap, Ui ∩Uj �= /0, then the map

hi ◦h−1
j : R

n �→ R
n

with domain h j(Ui ∩Uj) is differentiable (C∞, i.e., all derivatives are continuous)
and the Jacobi determinant of this map vanishes nowhere in h j(Ui ∩ Uj).

We thus have two coordinate systems in the overlapping region Ui ∩Uj: {xμ},
which is pulled back by hi from R

n to M , and {x̄μ}, which comes from h j (Fig. 1.1).
The map hi ◦h−1

j is represented on h j(Ui ∩Uj) ⊂ R
n by the function xμ(x̄1, . . . , x̄n),

μ = 1, . . . ,n, and the Jacobi determinant is

∂
(
x1, . . . ,xn

)

∂ (x̄1, . . . , x̄n)
.

We want to write the derivatives of the transformation functions xμ(x̄1, . . . , x̄n) in
shorthand notation:

∂xμ

∂ x̄ν
= Xμν̄ .
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M

h1(U1)

U1

h1

U2

h2

h2(U2)

Fig. 1.1 Some coordinate charts of manifold M

Note that the bar on the coordinate becomes a bar on the index! In the following
we will calculate a lot with these symbols. The following relations are often used:

n

∑
ν=1

Xμν̄ X ν̄ρ = δ μρ ,
n

∑
ρ=1

X ν̄ρ Xρμ̄ = δνμ .

They follow from the chain rule for derivatives of composite functions. More about
differentiable manifolds, see [5].

1.5.2 Curves and Tangential Vectors

In the first half of these Notes we want to treat mainly the dynamics of mass points.
The curves, which serve as trajectories, become a basic concept. First we define
what a curve is.

Definition 2 Let M be a n-manifold. A curve C is a map

C : R �→ M ,

which is piecewise differentiable in the following sense: in the coordinates {xμ} the
map is represented by n functions xμ(λ ) and these functions are piecewise C∞.

From the definition, it follows that the functions x̄μ(λ ), which represent the curve
C in other coordinates {x̄μ}, are determined by the functions xμ(λ ):

x̄μ(λ ) = x̄μ
(
x1(λ ), . . . ,xn(λ )

)
. (1.7)
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Here the x̄μ(x1, . . . ,xn) are the transformation functions from {xμ} to {x̄μ}.
The tangential vector tμ to C at a point p is determined by its components with

respect to {xμ}. If the point p corresponds to the value λ0 of the parameter λ we
have

tμ = ẋμ(λ0) , μ = 1, . . . ,n .

In differential geometry a very important question is how a quantity transforms if
the coordinates are changed. Equation (1.7) gives:

t̄μ = ˙̄xμ(λ0) =
n

∑
ν=1

∂ x̄μ

∂xν
ẋν(λ0) =

n

∑
ν=1

X μ̄ν tν .

Hence, the tangential vector is an example of a quantity with the following proper-
ties:

1. It is always connected to a particular point p of M .
2. In the coordinates {xμ} around p, it is represented by n components (t1, . . . , tn).
3. These components transform as follows:

t̄μ =
n

∑
ν=1

X μ̄ν (p) tν .

Such a quantity is called a vector.
What is new in this definition is the fact that every vector is defined at a partic-

ular point of the manifold (the vector “lives” at this point). In special relativity, for
instance, this is not demanded. In differential geometry, we must always connect
a vector to a point of M . Otherwise we do not know how the vector transforms:
the matrix X μ̄ν is not constant over the whole manifold M , as is the case in special
relativity, since the transformation of the coordinates is in general non-linear.

1.5.3 Affine Connection of a Manifold

Affine connection can be defined in many different ways. For us, the most advanta-
geous definition is the following.

Definition 3 Let M be a n-manifold. For physical or geometric reasons a class of
curves may be selected in a way that the coordinate representation xμ(λ ) of any
such curve satisfies the following differential equations:

ẍμ +
n

∑
ρ=1

n

∑
σ=1
Γμρσ ẋρ ẋσ = 0 , ∀μ , (1.8)

and that any such solution of this system defines a curve of this class. Here, the
functions Γμρσ (x) are assumed to be C∞-functions of xμ , and we demand

Γμρσ (x) = Γμσρ(x) , ∀x,μ ,ρ,σ .
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The curves then define an affine connection on M . The Γμρσ are called the compo-
nents of the affine connection and the curves the autoparallels of the affine connec-
tion, and the manifold is called affine connected.

The system (1.8) consists of n coupled, ordinary, non-linear differential equations
of second order. They are all solved for second-order derivatives; thus for every
point p with coordinates xμp and each vector vμ we get exactly one autoparallel in
this point.2 It satisfies (1.8) with the initial conditions

xμ(0) = xμp ,

ẋμ(0) = vμ .

Moreover the differential equation (1.8) is invariant with respect to affine trans-
formations of the parameter λ . The parameterization of the autoparallel is therefore,
by (1.8), given up to an affine transformation.

The components of the affine connection are only determined with respect to the
chosen coordinates. Now we go back to the question of how the quantities trans-
form under a change of coordinates. The answer is contained in the definition of the
affine connection. To find it we need more technical knowledge. It is worthwhile to
introduce this technique now, since it will be used many times later.

We define an index-carrying quantity (IQ) as a multidimensional table of num-
bers, the so-called components of the IQ, which are labeled by indices. For instance,
tμ is a one-dimensional table of numbers with n elements (t1, . . . , tn), X μ̄ν is a two-
dimensional IQ with n2 elements and Γμρσ a three-dimensional IQ. Every index runs
from 1 to n. The order of the indices is important. There are two types of indices:
upper and lower ones. The number p of upper and the number q of lower indices
determine the so-called type (p,q) of the IQ. The IQ tμ is of type (1,0) and Γμρσ of
type (1,2). We have the following calculation rules for the IQ.

Equality Two IQs are equal if they are of the same type and if every component of
the first IQ is equal to the corresponding component of the second. The equal-
ity can be expressed by demanding equality for all components with arbitrary
indices, e.g.,

Aμρσ = Bμρσ .

The indices that appear on the left- and on the right-hand side must be given the
same letters. Equal indices must appear on both sides in the same position, e.g.,
both indices upper or both lower. An equation like

Aμρσ = Bγαβ ,

for instance, can only make sense if μ , ρ , σ , and α take special values. Then
this equation means that only the corresponding components are equal, but not
necessarily that the whole IQs are equal.

2 We use an existence theorem from the theory of ordinary differential equations, see for example
[7], Chap. 1.
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Summation Two IQs of the same type can be added to define a new IQ, which is
again of the same type. For instance:

Zμρσ = Xμρσ +Y μρσ .

This equation means nothing else than adding the corresponding components.
Product Two arbitrary IQs of type (p1,q1) and (p2,q2) can be multiplied. This

gives an IQ of type (p1 + p2,q1 +q2). For instance:

Zρσμνκ = Xρκ Bσμν .

This equation gives a prescription of how to get a component of Zρσμνκ by multi-
plying the components of Xρκ and Bσμν . Note that the product is only well defined
if the order of the indices is fixed. We can define for example

W ρσ
κμν = Xρκ Bσμν ;

W is then an IQ other than Z!
Algebra An important observation is that calculating with index-carrying quantities

means not calculating with the whole table, as is the case when we calculate
with matrices. Calculating with IQs always means calculating with the single
components. The two operations that we introduced above are therefore nothing
but the common operations known from calculating with numbers. This is why
the standard rules apply here also: two commutative, two associative, and one
distributive law.

Contraction Given two IQs of type (p,q), where p > 0 and q > 0, we can construct
an IQ of type (p− 1,q− 1) by choosing one of the upper and one of the lower
indices, then adding the components with the same values for those two indices.
For instance

Wα
β =

n

∑
μ=1

Zμαβμ .

We can obtain different IQs depending on the choice of the upper and the lower
index. Therefore it is important to write all indices explicitly. The summation
indices are called dummy whereas the others are called free indices. Einstein
proposed the following convention for dummy indices: the summation symbol is
omitted. For example one writes the IQ Wα

β as Zμαβμ . This is known as the Einstein
convention (see also [8], p. 9). It shortens calculations and makes expressions
easier to read.

We want to apply the above rules and conventions to calculations with IQs in order
to derive the transformation law for the components of the affine connection. We
have two coordinate systems {xμ} and {x̄μ}. Let an autoparallel C be represented in
the coordinates {xμ} by functions xμ(λ ). These functions satisfy (1.8). With respect
to {x̄μ} this autoparallel is given by the functions x̄μ(λ ). Which equations satisfy
these functions? We know that

xμ(λ ) = xμ
(
x̄1(λ ), . . . , x̄n(λ )

)
.
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Let us calculate the derivatives

ẋμ =
n

∑
ρ=1

∂xμ

∂ x̄ρ
˙̄xρ = Xμρ̄ ˙̄xρ ,

ẍμ =
n

∑
ρ=1

∂xμ

∂ x̄ρ
¨̄xρ +

n

∑
ρ=1

n

∑
σ=1

∂ 2xμ

∂ x̄ρ x̄σ
˙̄xρ ˙̄xσ = Xμρ̄ ¨̄xρ +Xμρ̄σ̄ ˙̄xρ ˙̄xσ ,

and insert them in (1.8). Then, we obtain

Xμρ̄ ¨̄xρ +Xμρ̄σ̄ ˙̄xρ ˙̄xσ +Γμαβ Xαρ̄ ˙̄xρ Xβσ̄ ˙̄xσ = 0 .

Using the commutative law and the distributive law we find

Xμρ̄ ¨̄xρ +
(

Xμρ̄σ̄ +Γμαβ Xαρ̄ Xβσ̄

)
˙̄xρ ˙̄xσ = 0 .

The left-hand side is an IQ of type (1,0). If we multiply it with the IQ X ν̄κ and
contract the indices μ and κ , we end up with

¨̄xν +
(

X ν̄μ Xμρ̄σ̄ +Γμαβ X ν̄μ Xαρ̄ Xβσ̄

)
˙̄xρ ˙̄xσ = 0 .

This equation already has the same structure as (1.8). This yields

Γ̄νρσ = Γμαβ X ν̄μ Xαρ̄ Xβσ̄ +X ν̄μ Xμρ̄σ̄ , (1.9)

which is the desired transformation law. It is an inhomogeneous law. This was to
be expected: if we had, in the transformation law, only the first term on the right-
hand side, the components of the affine connection would vanish in all coordinate
systems as soon as they vanish in one. The affine connection of Newtonian space–
time gives a counterexample: the components vanish in inertial frames but not in
arbitrary reference frames.

1.5.4 The Metric Affine Connection

An important example for an affine connection is the following. Let us consider the
manifold given by the surface of a sphere. A special class of curves on the sphere
consists of the great circles. These are distinguished from all other curves by their
geometric properties. Do they define an affine connection? To answer this question,
we have to derive the differential equations that define great circles.

1.5.4.1 The Length of Curves

Let p and q be two arbitrary points on the sphere. Every curve connecting p and q
(connecting curve) has a proper length. Great circles are defined as curves whose
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segments give rise to the shortest connecting curves. We can therefore deduce the
differential equations for great circles as Euler–Lagrange equations coming from
a variation principle. Here the length of the connecting curve plays the role of the
action.

The length of an arbitrary curve C, which is given in the coordinates ϑ and ϕ by
the parameter representation

ϑ = ϑ(λ ) , ϕ = ϕ(λ ) , a ≤ λ ≤ b ,

can be calculated as follows. The relation between the coordinates ϑ and ϕ on the
one hand, and the coordinates yk, k = 1,2,3, of the Euclidean space E

3, in which
the sphere is embedded, on the other read

y1 = r sinϑ cosϕ , (1.10)

y2 = r sinϑ sinϕ , (1.11)

y3 = r cosϑ . (1.12)

Here r is the radius of the sphere; C therefore admits in E
3 the following represen-

tation:

y1(λ ) = r sinϑ(λ ) cosϕ(λ ) ,

y2(λ ) = r sinϑ(λ ) sinϕ(λ ) ,

y3(λ ) = r cosϑ(λ ) .

Its length L is given by

L =
∫ b

a
dλ

√
(ẏ1)2 +(ẏ2)2 +(ẏ3)2 .

Inserting the functions yk(λ ) results in

L =
∫ b

a
dλ

√
r2ϑ̇ 2 + r2 sin2ϑϕ̇2 .

An arbitrary n-dimensional surface F in E
m can be defined by its embedding

equations (in analogy to (1.10), (1.11) and (1.12)):

yk = yk(xμ) , k = 1, . . . ,m ,

and a curve is represented by

xμ = xμ(λ ) , μ = 1, . . . ,n .

The expression under the square root then becomes

(
ẏ1)2

+ · · ·+(ẏm)2 =
m

∑
k=1

∂yk

∂xμ
∂yk

∂xν
ẋμ ẋν .
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1.5.4.2 The Metric

It is worthwhile to study this expression. It is a quadratic form in the components
ẋμ of the tangential vector to the curve. The coefficients of this quadratic form are
denoted by gμν , i.e.,

gμν =
3

∑
k=1

∂yk

∂xμ
∂yk

∂xν
. (1.13)

This equation determines an IQ gμν at any point xμ of the surface and not only along
the curve. The field gμνxρ is called metric of the surface F . It is induced by the
embedding of F in E

3. Actually, the metric does not depend on the curve and can be
used to calculate the length of any curve. We can hence store this information in the
metric, which has the advantage that it is not necessary to know how the manifold
is embedded in the Euclidean space. In particular it is not necessary to embed at all.
An example is given by the metric of the Euclidean space E

n.
The components of the metric depend on the chosen coordinate system. Let us

calculate this dependence. We choose new coordinates x′ on the surface F . The
transformation to the old coordinates is given by

xμ = xμ(x′) .

The chain rule leads to
∂yk

∂x′μ
=
∂yk

∂xρ
Xρμ ′ .

If we insert this equation in the definition of gμν , we obtain

g′μν = Xρμ ′X
σ
ν ′gρσ .

This is the transformation property of the components of the metric. It is linear
and homogeneous as the one for vectors, but a little more complicated.

1.5.4.3 Tensors

Such IQs, which are connected to the coordinate system and whose components
transform linearly and homogeneously, and where the coefficients of the transfor-

mation law are given by products of the matrix elements Xρμ ′ or Xμ
′

ρ , represent the
so-called tensors. More precisely, a tensor A of type (p,g) is a quantity that is in
any coordinate system represented by an IQ of type (p,g). The transformation law
of the representation Aρ...

σ ..., with respect to {xμ}, to A′μ...
ν ... , with respect to {x′μ}, is

given by

A′μ...
ν ... = Xμ

′
ρ . . .Xσν ′ . . .A

ρ...
σ ... ,

where the matrix Xμ
′

ρ appears p times and its inverse Xρμ ′ q times, with corresponding
indices on the right-hand side. Such a tensor is also called of type (p,q) or p times
contravariant and q times covariant. Thus a vector is simply contravariant and the



16 1 Geometrization of Mechanics

metric is a two times covariant tensor. The sum p+q is referred to as the rank of the
tensor. This terminology expresses nothing but certain transformation properties of
physical and geometric quantities: very different physical and geometric quantities
can be described by tensors of the same type. Examples of quantities that are not
tensors: Γ, X .

From the transformation law it follows that every tensor is connected with a point
on the manifold, exactly as we saw it already for vectors. A tensor field assigns a
tensor to every point on the manifold. This tensor is connected with that point. A
tensor field is smooth if the components depend smoothly on the coordinates in one
of the tensor’s coordinate representations.

We have defined tensors as objects that are represented by IQs with respect to
coordinate systems and these IQs have to transform from one coordinate system to
another in a precise way. We can speak about a tensorial property if this property is
independent of the representation (i.e., is valid in all representations). Some exam-
ples for tensorial properties follow. We have introduced some operations for the IQs:
equality, summation, product, contraction. If we combine the IQs that represent ten-
sors with such operations in any coordinate system, will the results be tensors again,
i.e., will the corresponding transformation properties hold for such combinations?
We want to study this question for each of the above-mentioned operations.

Equality Consider two tensors S and T , of the same type, which are connected
to a point. In a fixed coordinate system they are represented by two IQs, Sμ...

ν ...
and T μ...

ν ... , and these IQs are assumed to be equal. Then the IQs that represent
the tensors are equal in every coordinate system. This follows from the fact that
the transformation properties of the components are equal. We call such ten-
sors equal. In this way the equality of the IQs coincides with the equality of the
tensors.

Addition Let us study an example. Consider two tensors S and T of the same type
(1,2) connected to a point. In the coordinate system {xμ} they are represented
by the IQs Sμρσ and T μρσ . These IQs are of the same type and can be added:

W μ
ρσ = Sμρσ +T μρσ .

In another coordinate system, {x′μ}, we have two other IQs, S′μρσ and T ′μ
ρσ , and

their sum can be denoted by W ′μ
ρσ . Is the representation of the tensor W by such a

sum unique? This means: Do the IQs W μ
ρσ and W ′μ

ρσ satisfy the correct transfor-
mation rule? We calculate:

W ′μ
ρσ = S′μρσ +T ′μ

ρσ = Xμ
′

α Xβρ ′X
γ
σ ′S

α
βγ +Xμ

′
α Xβρ ′X

γ
σ ′T

α
βγ .

This follows since S and T are tensors. Using the calculation rules for IQs we
can now factor out the transformation matrices:

Xμ
′

α Xβρ ′X
γ
σ ′S

α
βγ +Xμ

′
α Xβρ ′X

γ
σ ′T

α
βγ = Xμ

′
α Xβρ ′X

γ
σ ′

(
Sαβγ +Tαβγ

)

= Xμ
′

α Xβρ ′X
γ
σ ′W

α
βγ .
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This is the right transformation law. We now see why summation is a tensorial
operation. It is possible to add tensors of the same type (p,q) and the sum is
again a tensor of this type.

Product Let S and T be tensors connected to a point and of type (2,1) respectively
(1,1). Let us take the product of their IQ representations in the two coordinate
systems from above:

V μνκρσ = Sμνρ T κσ , V ′μνκ
ρσ = S′μνρ T ′κ

σ .

Then we obtain

V ′μνκ
ρσ = S′μνρ T ′κ

σ = Xμ
′

α Xν
′
β X γρ ′S

αβ
γ Xκ

′
δ Xεσ ′T δε

= Xμ
′

α Xν
′
β X γρ ′X

κ ′
δ Xεσ ′S

αβ
γ T δε = Xμ

′
α Xν

′
β X γρ ′X

κ ′
δ Xεσ ′V

αβδ
γε .

Hence the product is also a tensorial operation. The product of tensors of types
(p1,q1) and (p2,q2) leads to a tensor of type (p1 + p2,q1 +q2).

Contraction Let us take the tensor S of the previous example and calculate the
contraction of the IQs corresponding to the coordinate systems {xμ} and {x′μ}:

Uμ = Sμνν , U ′μ = S′μνν .

We then obtain

U ′μ = S′μνν = Xμ
′

α Xν
′
β X γν ′S

αβ
γ = (Xν

′
β X γν ′)X

μ ′
α Sαβγ .

Using
Xν

′
β X γν ′ = δ

γ
β

we find
U ′μ = Xμ

′
α Sαγγ = Xμ

′
α Uα .

We see that contraction is a tensorial operation that transforms a tensor of type
(p,q) into a tensor of type (p−1,q−1).

1.5.4.4 Symmetry

The metric in every point is a so-called symmetric tensor. Namely, we see from the
definition in (1.13) that

gμν(x) = gνμ(x) , ∀x,μ ,ν .

This property is invariant with respect to coordinate transformations:

g′μν = Xρμ ′X
σ
ν ′gρσ = Xρμ ′X

σ
ν ′gσρ = Xσν ′X

ρ
μ ′gσρ = Xρν ′X

σ
μ ′gρσ = g′νμ .

In analogy to symmetric tensors we can also define antisymmetric tensors: a tensor
Aμν is antisymmetric if Aμν = −Aνμ .
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Every IQ can be split uniquely, with respect to two indices of the same type
(i.e., both indices are upper or lower indices), into the sum of its symmetric and its
antisymmetric part. For example let Bρσμ be an arbitrary IQ of type (2,1). Then we
can write

Bρσμ = Sρσμ +Aρσμ ,

where
Sρσμ = Sσρμ , Aρσμ = −Aσρμ .

Both Sρσμ and Aρσμ are uniquely defined by the components of Bρσμ :

Sρσμ =
1
2

(
Bρσμ +Bσρμ

)
, Aρσμ =

1
2

(
Bρσμ −Bσρμ

)
.

Symmetric and antisymmetric IQs have the following property, which is often
used. Let for example Sρσ be symmetric and Aρσ antisymmetric. Then the equation

SρσAρσ = 0

holds. It is true in general that the contraction of two symmetric with two antisym-
metric indices always gives zero. The proof in the above case works as follows:

SρσAρσ = −SρσAσρ = −SσρAσρ = −SρσAρσ .

If IQs represent tensors in a given coordinate system, then all relations hold in an
arbitrary coordinate system.

Contravariant metric

The tensor field gμν(x) defines the so-called contravariant metric. In the following
we want to explain what this means.

The right-hand side of the defining equation (1.13) for the metric on a surface F
can be interpreted as the scalar product of two vectors in E3: we have (Fig. 1.2)

3

∑
k=1

∂yk

∂xμ
∂yk

∂xν
=
(
�Yμ ,�Yν

)
,

where the vectors�Yμ , μ = 1,2, are tangent vectors to the curves x1 = λ , x2 = const,
respectively x1 = const, x2 = λ on the surface F . If the coordinates {xμ} form an
allowed system (i.e., if they are independent), then also these two vectors are linearly
independent. The determinant detgμν of the metric gμν is nothing but the Gram
determinant of these vectors and hence must not vanish.

In general the following holds for symmetric, contravariant tensors Tμν of second
rank on an arbitrary n-manifold: if the determinant does not vanish with respect
to a given coordinate system {x′μ}, detTμν �= 0, then we have detT ′

μν �= 0 in any
coordinate system {x′μ}. Indeed, we have
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MFx1 = const

x2 = const

∂yk

∂x2

∂yk

∂x1

Fig. 1.2 Partial derivatives as components of tangential vectors to coordinate curves on the sub-
manifold F

T ′
μν = Xρμ ′X

σ
ν ′Tρσ .

This can be written as the matrix product of three n× n matrices if we define the
matrices T and X as:

T :=

⎛

⎜
⎝

T11 · · · T1n
...

...
Tn1 · · · Tnn

⎞

⎟
⎠ ,

and

X :=

⎛

⎜
⎝

X1
1 · · · X1

n
...

...
Xn

1 · · · Xn
n

⎞

⎟
⎠ .

Then it obviously holds that
T′ = X
TX .

We therefore get3

detT ′
μν = det2Xρμ ′ detTρσ . (1.14)

The matrix X is always regular, det2 Xρμ ′ > 0, and therefore even the sign of detTρσ
is independent of the coordinate system.

The metric gμν(x) at the point x, considered as matrix, has therefore always an
inverse. We denote the components of this inverse by gμν(x), i.e.,

gμν(x)gνρ(x) = δρμ .

This way we define a new IQ gμν(x) in every point and with respect to every coordi-
nate system. It is possible to show (exercise) that the new IQ transforms as a tensor
of type (2,0). It is known as the contravariant metric.

3 We use the theorem on the determinant of the product of matrices, see for instance [9], p. 133.
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1.5.4.5 General Definition of the Metric

So far we defined the metric only on surfaces embedded in E
m. A general definition

for the metric can also be given.

Definition 4 Let M be a n-manifold and gμν(x) a symmetric non-degenerate
(detgμν �= 0) tensor field of type (0,2), which is well defined and smooth every-
where on M . Then the pair (M ,gμν) is called a metric manifold and gμν(x) is
called the metric on M .

The metric defines a scalar product in the space of vectors at a given point. Con-
sider for example two vectors V μ and Uμ at the point p. Then the expression
gμν(p)V μUν defines a scalar that depends linearly on each of the vectors and is
symmetric under the exchange of the two vectors. However, this expression is not
necessarily positive-definite. We want to allow here explicitly indefinite metrics
also. The positive-definite metrics are called Riemannian [5].

Definition 5 Let (M ,gμν) be a metric n-manifold and C : [λ1,λ2] �→M an arbitrary
piecewise smooth curve in M . Then the length L(C) of this curve is defined by

L(C) =
∫ λ2

λ1

dλ
√

gμν(x(λ ))ẋμ(λ )ẋν(λ ) . (1.15)

It is independent of the choice of parameterization xμ(λ ). (Note that the length is
only defined for non-negative expressions under the square root.)

We see that the manifold under consideration does not necessarily need to be a
surface in E

3 to define the length of curves. However, such surfaces are examples
for metric manifolds.

1.5.4.6 Geodesics

We can now derive the differential equations satisfied by connecting curves of ex-
tremal length on an arbitrary metric manifold. These connecting curves are called
geodesics and the differential equations are called geodesic equations. The differ-
ential equation defining a great circle on the surface of a sphere is a special case of
such geodesic equations.

Let p and q be two points on a metric n-manifold (M ,g). Moreover let {xμ} be
a coordinate system and C : [λ1,λ2] �→ M an arbitrary curve connecting the points
p and q, C(λ1) = p, C(λ2) = q. Let xμ(λ ) be the representation of the curve C with
respect to {xμ}. Then the length of C is given by the integral (1.15). To find the
extrema of the length amounts to a typical variation problem where the endpoints
are fixed. The Lagrange function L reads

L (x(λ ), ẋ(λ )) =
√

gμν(x(λ ))ẋμ(λ )ẋν(λ ) .

The solution x(λ ) must satisfy the Euler–Lagrange equations:
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∂L

∂xκ
− d

dλ
∂L

∂ ẋκ
= 0 .

We calculate

∂L

∂xκ
=

1
2L

∂gμν
∂xκ

ẋμ ẋν ,

∂L

∂ ẋκ
=

1
2L

(
gκν ẋν +gμκ ẋμ

)
=

1
L

gκν ẋν ,

d
dλ
∂L

∂ ẋκ
=

1
L

gκν ẍν +
1
L

∂gκν
∂xμ

ẋν ẋμ − 1
L 2 L̇ gκν ẋν

(the above holds under the assumption that gμν(x)ẋμ ẋν > 0). Inserting this in the
Euler–Lagrange equations yields

1
L

gκν ẍν +
1
L

∂gκν
∂xμ

ẋν ẋμ − 1
2L

∂gμν
∂xκ

ẋν ẋμ =
1

L 2 L̇ gκν ẋν .

We can solve this equation for the second-order derivatives ẍν by multiplying it by
L gρκ :

ẍρ +
1
2

gρκ
(

2
∂gκν
∂xμ

− ∂gμν
∂xκ

)
ẋμ ẋν =

dlnL

dλ
ẋρ .

The second term on the left-hand side can be written differently. The expression
in the brackets is not symmetric in the indices μ and ν , but the expression ẋμ ẋν is.
Hence, only the symmetric part of the expression in the brackets contributes. We
want to denote the coefficient of ẋμ ẋν , which arises this way, by {ρμν}, the so-called
Christoffel symbol. Then we have

{ρμν} =
1
2

gρκ
(
∂gκν
∂xμ

+
∂gκμ
∂xν

− ∂gμν
∂xκ

)
, (1.16)

and

ẍρ +{ρμν}ẋμ ẋν =
dlnL

dλ
ẋρ . (1.17)

This is the geodesic equation.
If the right-hand side of the equation was zero, then this equation would be for-

mally identical to (1.8) of an autoparallel of an affine connection. Why is the right-
hand side not zero? We varied a functional which defines the length of a curve
and which is therefore invariant under arbitrary reparameterizations of the curve.
A reparameterization is a transformation of the parameters, for instance λ = λ (κ).
The derived equation possesses this symmetry, too. On the other hand, the equa-
tion of an autoparallel does not have this symmetry; it determines a class of curve
parameters, the so-called affine parameters.

Is there a particular class of parameters for which the right-hand side of the
geodesic equation vanishes? These have to be exactly those parameters for which
L̇ = 0, hence L = const, holds. If we plug this in the expression for the length
given in (1.15), we obtain
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s(λ ) =
∫ λ

β
dξL = L (λ −β ) .

Hence
λ = αs+β ,

where α = L −1 and s is the length of the curve.
We therefore get the following result. The geodesics on a metric manifold are

autoparallels of an affine connection if they are parameterized by their length or by
an affine transformation of it. The components of the affine connection are given by
the Christoffel symbols. This affine connection is called metric affine connection.

It is important to note the following: an affine connection can exist even without
having a metric. The manifolds with affine connections are more general than metric
manifolds.

1.6 Cartan–Friedrichs Space–Time

We now have enough mathematical tools at hand to finally express the idea that
the gravitational force is an apparent force in a mathematical language. To do so,
we first rewrite Newton’s second law in an arbitrary reference frame, such that all
apparent forces as well as all physical ones appear in this equation. Then we try to
make a different distinction between these forces from what was done in Newton’s
theory.

The motion of a mass point with mass μ under the influence of a total force �f is
determined, with respect to an inertial frame {x̄μ}, by the following equations:

¨̄x0 = 0 , ¨̄xk = μ−1 f̄ k ( ˙̄x0)2
. (1.18)

The term ( ˙̄x0)2 on the right-hand side is a correction term stemming from the
fact that λ is not the time and hence ¨̄xk is not the acceleration (a dot denotes
the derivative with respect to λ ). The first equation in (1.18) defines a special
class of parameters λ : they are given by a time function up to affine transforma-
tions.

The transformation of the left-hand side of (1.18) to a general reference frame
(with Cartesian axes!) is the same as the transformation of a free motion. We differ-
entiate twice the equations

x0 = x̄0 −T , xk = xk (x̄0, x̄1, x̄2, x̄3)

and then substitute (1.18). We obtain

ẍ0 = 0 ,

ẍk +Γk
Nρσ ẋρ ẋσ = μ−1 f k (ẋ0)2

, (1.19)
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where
f k = Xk

l̄ f̄ l .

Here, ΓμNρσ are the components of the Newton affine connection; Xk
l̄

is a (time-
dependent) orthogonal matrix. In (1.19) the apparent forces stand on the left, the
physical forces on the right-hand side.

The total force �f can be split into the gravitational force and the rest:

f k = −μ∂kΦ+Fk , (1.20)

where Φ is the Newton potential. Let us insert (1.20) in (1.19):

ẍk +Γk
Nρσ ẋρ ẋσ = −∂kΦ

(
ẋ0)2

+μ−1Fk (ẋ0)2
.

As expected, the gravitational part has the same form as the geometric terms on
the left-hand side. In particular, it does not contain any information about the test
particle. If we add this part to the left-hand side, we obtain

ẍk +
(
Γk

Nρσ +δ 0
ρ δ 0
σ∂kΦ

)
ẋρ ẋσ = μ−1Fk (ẋ0)2

. (1.21)

The coefficients of the quadratic form on the left-hand side of (1.21) define a new
affine connection, which we call the Einstein affine connection. Its components
ΓμEρσ are then given by

Γ0
Eρσ = Γ0

Nρσ = 0 , Γk
Emn = Γk

Nmn = 0 ,

Γk
E00 = Γk

N00 +∂kΦ , Γk
E0l = Γk

N0l . (1.22)

The autoparallels of the Einstein affine connection are the free falls of Newton’s
theory (Fk = 0).

This way we actually obtained a new space–time. It possesses the following
structures: an absolute time, as is the case for Newton’s space–time, the E

3-structure
in the simultaneity hypersurfaces as for Newton’s space–time, but an Einstein affine
connection instead of a Newton affine connection. The space–time with this geom-
etry is called Cartan–Friedrichs space–time [10], see also [8], p. 287. In this space–
time, gravitation is not considered as a field of force but as a part of the geometry of
space–time.

Equations (1.21) and (1.19) are mathematically “equivalent”: their solutions de-
scribe the same motion of the mass points. The measurable predictions did not
change. Nevertheless the interpretation is changed significantly. What in Newton’s
theory is described as a motion under the influence of a gravitational force (free
fall), becomes a free motion in Cartan–Friedrichs theory. Whereas the geometry
of space–time in Newton’s theory is rigid and does not change, it depends on the
distribution of the masses in Cartan–Friedrichs theory.

Let us consider for example the motion of a man who stands on the floor of a
lecture hall. The viewpoint of Newton’s theory is that this motion is free of forces:
the gravitational force of the Earth is exactly compensated by the contact force of
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the Earth’s surface. On the other hand, in the perspective of Cartan–Friedrichs the-
ory, the man’s motion is not free of forces: the contact force acts on the man and
accelerates him upward.

The acceleration is now defined directly by an affine connection (left-hand side
of (1.21)) and not by an inertial frame. This resolves the paradox of the expanding
Earth. Do we have in the Cartan–Friedrichs theory an analogue for the Newtonian
inertial frames? We want to answer this question now. The formal definition of the
inertial frame is based on the affine connection and reads: the inertial frame of an
affine connection is a reference frame in which all components of the affine connec-
tion vanish everywhere:

Γρμν(x) = 0 , ∀ρ,μ ,ν ,x . (1.23)

This question is important for the solution of the problem of an expanding Earth.
That is to say, if there was a Cartesian frame x̄μ where Γ̄E vanishes, then (1.21)
would read

¨̄xk = μ−1F̄k ( ˙̄x0)2
.

The force F̄k is now a contact force, which points everywhere away from the center
of the Earth. Then the coordinates x̄k of the surface must change exactly in this
direction and hence the Earth has to expand. Therefore such inertial frames are not
supposed to exist.

A coordinate system that satisfies (1.23) is called in differential geometry a
global geodesic system. Our question can then be formulated mathematically: Does
the Einstein affine connection allow global geodesic systems? To answer this ques-
tion we first have to study again some more mathematics.

1.7 Curvature Tensor

The problem mentioned in the previous section can in general be stated precisely as
follows. Let M be an affine-connected n-manifold. Let Γμρσ be the components of
the affine connection with respect to a reference frame {xμ}. Do there exist coordi-
nates {x̄μ} such that the corresponding components of the affine connection vanish
everywhere? That is to say

Γ̄μρσ (x̄) = 0 ∀x̄,μ ,ρ,σ .

We can formulate it differently: we need to find the transformation functions x̄μ(x).
If we use the transformation law for the components of Γ, we obtain

0 = Γ̄μρσ (x̄) = ΓνλκX μ̄ν Xλρ̄ Xκσ̄ +X μ̄ν Xνρ̄σ̄ .

This seems to be a difficult differential equation for the transformation functions
x̄μ(x). We can, however, simplify this equation. We can transform the last term as
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X μ̄ν Xνρ̄σ̄ = X μ̄λ

(
∂σ̄Xλρ̄

)
= ∂σ̄

(
X μ̄λ Xλρ̄

)
−
(
∂σ̄X μ̄λ

)
Xλρ̄

= ∂σ̄
(
δ μρ

)
−
(

X μ̄λκXκσ̄
)

Xλρ̄ = −X μ̄λκXκσ̄ Xλρ̄ .

This yields

ΓνλκX μ̄ν Xλρ̄ Xκσ̄ +X μ̄ν Xνρ̄σ̄ =
(
ΓνλκX μ̄ν −X μ̄λκ

)
Xκσ̄ Xλρ̄ .

Hence, we obtain the equation

∂ 2x̄μ

∂xλ ∂xκ
= Γνλκ(x)

∂ x̄μ

∂xν
. (1.24)

This is a system of linear differential equations for the functions x̄μ(x).
A necessary condition for the solvability of this system can be deduced by dif-

ferentiating both sides with respect to xα and demanding symmetry in the indices α
and κ . Let us start with the differentiation:

∂ 3x̄μ

∂xλ ∂xκ∂xα
= ∂αΓνλκ(x)X

μ̄
ν +Γνλκ(x)X

μ̄
να

= ∂αΓνλκ(x)X
μ̄
ν +Γνλκ(x)Γ

ρ
να(x)X μ̄ρ

= [∂αΓ
ρ
κλ (x)+Γνλκ(x)Γ

ρ
να(x)]X μ̄ρ .

Here we substituted the expression given in (1.24) for X μ̄να . The symmetry condition
leads to

∂αΓ
ρ
λκ(x)+Γνλκ(x)Γ

ρ
να(x)−∂κΓρλα(x)−Γνλα(x)Γρνκ(x) = 0 .

The expression on the left-hand side, which we want to write in a shorthand notation
as Rρλακ , plays an important role in differential geometry. We have two theorems:

Theorem 1 Let M be a n-manifold with affine connection and Γρνκ the components
of the affine connection with respect to an arbitrary coordinate system {xμ}. An IQ
Rρλακ is assumed to be defined in any such coordinate system as follows:

Rρλακ(x) = ∂αΓ
ρ
λκ(x)−∂κΓ

ρ
λα(x)+Γνλκ(x)Γ

ρ
να(x)−Γνλα(x)Γρνκ(x) . (1.25)

Then Rρλακ is a tensor of type (1,3), which is antisymmetric in the last two indices.
Rρλακ is called the curvature tensor of the affine connection Γρλκ .

The proof is direct, even though a bit tedious: one has to use the transformation law
(1.9) for Γρλκ and those for the derivatives with respect to the coordinates. All terms
that contain second- and third-order derivatives of the transformation functions can-
cel.

Theorem 2 The necessary and sufficient condition for having at least one solution
of the differential equation (1.24) in the neighborhood U of p reads
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Rρλακ(x) = 0 ∀x ∈U,ρ,λ ,α,and κ .

We have shown only the necessary condition. The opposite direction is difficult
[11].

The affine connection, whose components can be transformed to zero, is called
integrable or flat. We note that Rρλακ as tensor vanishes either in every coordinate
system or in none. The integrability of an affine connection is therefore a coordinate-
independent property.

Let us calculate the curvature of the Cartan–Friedrichs space–time. For the affine
connection, we want to insert the relation (1.22) in (1.25) and want to use the fact
that the curvature tensor vanishes for the Newton affine connection. We obtain for
instance, for the components RE

k
0l0:

RE
k
0l0 = ∂lΓE

k
00 −∂0ΓE

k
0l +ΓE

k
lρΓE

ρ
00 −ΓE

k
0ρΓE

ρ
0l

= ∂l

(
ΓN

k
00 +∂kΦ

)
−∂0ΓN

k
0l +ΓN

k
l0ΓN

0
00 +ΓN

k
lr (ΓN

r
00 +∂rΦ)

−
(
ΓN

k
00 +∂kΦ

)
ΓN

0
0l −ΓN

k
0rΓN

r
0l

= ∂l∂kΦ+
(
∂lΓN

k
00 −∂0ΓN

k
0l +ΓN

k
lρΓN

ρ
00 −ΓN

k
0ρΓN

ρ
0l

)

+ ΓN
k
lr∂rΦ−∂kΦΓN

0
0l . (1.26)

The last two terms are zero and the four terms in brackets are equal to the component
RN

k
0l0 of the Newton curvature tensor, which of course vanishes. This way we obtain

RE
k
0l0 = ∂l∂kΦ . (1.27)

Analogously, we can calculate all the other components of the curvature tensor with
the simple result

RE
k
mln = RE

0
lmn = RE

k
0mn = RE

k
l0m

= RE
0
0mn = RE

0
l0m = RE

0
00l = 0 . (1.28)

Hence, as expected, the Einstein affine connection is curved for every inhomoge-
neous gravitational field; in this case, no global inertial frames can exist.

It is surprising that the curvature exists, so to speak, only in the time direction.
This is implied by the fact that all purely space-like components RE

k
mln of the tensor

vanish. If we use the property of the components of the Newton affine connection
that only Γk

N00 and Γk
N0l are different from zero (exercise) and that the same is true

for the Einstein affine connection, we easily see: the straight lines in every simul-
taneity surface (which is the three-dimensional Euclidean space) are autoparallels of
the Einstein affine connection, exactly as is the case for the Newton affine connec-
tion. This property, however, will not survive in the relativistic theory, since space
and time are then not separable anymore. But in those cases where the Newton the-
ory is a good approximation, the curvature of the space will be smaller than the
curvature in the time direction by some powers of the speed of light.
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What is the meaning of the individual components of the curvature tensor? So far
we just know that the vanishing of the curvature tensor guarantees the existence of
inertial frames. This is just a very rough understanding of the components. We can
gain more insight in the following way.

What is the physical meaning of the matrix RE
k
0l0? Let us consider two points,

one with coordinates xm and the other with coordinates xm + δxm. The relative ac-
celeration ak of two bodies free falling through these points is

ak = −∂kΦ(xm +δxm)+∂kΦ(xm) = −∂k∂lΦ(xm)δxl = −RE
k
0l0δxl .

The components of the curvature tensor thus denote a difference in the acceleration
of the freely falling system in different points. On the Earth we perceive such rel-
ative accelerations, for instance in the field of the Moon. They evoke forces which
produce tides. This is why it is sometimes said that the curvature tensor of gen-
eral relativity describes tidal forces. It is also true in general that the components of
the curvature tensor of an arbitrary affine connection contain information about the
relative acceleration of its autoparallels.

1.8 The Equivalence Principle

1.8.1 Galilei Equivalence Principle

We were able to write Newtonian mechanics in Cartan–Friedrichs form and to make
gravitation become the geometry of space–time. But this was only possible under
the following assumption:

Galilei equivalence principle: The motion of an arbitrary free-falling test
particle is independent of its consistence and of its structure.

For this it is sufficient that (a) the test particle is electrically neutral, (b) its grav-
itational binding energy is negligible compared with the mass, (c) its angular mo-
mentum is negligible, (d) its radius is small enough for the inhomogeneities of the
gravitational field not to affect the motion. This is the so-called Galilei equivalence
principle (or weak equivalence principle). The first experiments for it (these were
pendular experiments, the Pisa tower was just an Gedankenexperiment) were done
by Galilei (see [2]).

We now face two problems. First, if the gravitational effects on all systems, not
only on the dynamical trajectories, simply result from reference frames that are
not moving correctly, then it should be possible to generalize the Galilei principle.
But how? Second, a complete abolishment of the inertial frames is not convincing.
The inertial frames play far too important a role, in particular in special relativity,
and special relativity is experimentally very well established. They should not be
absolutely wrong but survive maybe as an approximation. The answers to both the
questions are related. We first need some mathematics.
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1.8.2 Geodesic Systems

Equation (1.27) shows that in Cartan–Friedrichs space–time no exact analogy to
inertial frames exists. Can we weaken the condition (1.24) and obtain nevertheless
a reasonable class of inertial frames? The following definition is suitable:

Definition 6 Let M be a n-manifold with affine connection Γ and p an arbitrary
point of M . The coordinate system {xμ} is called geodesic in p if

Γμρσ (p) = 0 .

Theorem 3 For every point p of any affine-connected manifold M there exists at
least one coordinate system, which is geodesic in p.

Proof Let us choose coordinates {xμ} around the point p; the components of the
affine connection with respect to {xμ} may be denoted by Γμρσ , and let Γμρσ (p) �=
0. We want to show that there exist new coordinates {x̄μ} such that Γ̄μρσ (p) = 0.

The condition Γ̄μρσ (p) = 0 is equivalent to (1.24), restricted to a point p:

∂ 2x̄μ

∂xρ∂xσ
(p) =

∂ x̄μ

∂xν
(p)Γνρσ (p) .

This condition is satisfied by the following transformation functions:

x̄μ = xμ − xμ(p)+
1
2
Γμρσ (p)(xρ − xρ(p))(xσ − xσ (p)) (1.29)

and hence the functions {x̄μ}, which are defined by these transformations, are the
coordinates we were looking for, qed.

1.8.3 Local Inertial Frames

What is the physical meaning of the geodesic coordinates in Cartan–Friedrichs
space–time? Let us consider such a space–time with a given gravitational field Φ
and let us choose a point p. We can choose the coordinates in an intelligent way: let
{xμ} be an inertial frame in the corresponding Newton space–time. Then we have

ΓN
μ
ρσ = 0 .

Equation (1.22) then yields
ΓE

k
00 = ∂kΦ ,

where all other components of ΓE vanish. If we insert this in the transformation
equation (1.29), we obtain

x̄0 = x0 − x0(p),

x̄k = xk − xk(p)+
1
2
∂kΦ(p)

(
x0 − x0(p)

)2
.
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The trajectory of the origin x̄κ = 0 is

xk = xk(p)− 1
2
∂kΦ(p)

(
x0 − x0(p)

)2
.

This is the trajectory of the free fall through the point p around x0 = x0(p), where
the two coordinate systems coincide. The relative rotation of the spatial axes is given
by a constant matrix

Xk̄
l =

∂ x̄k

∂xl = δ k
l ,

∂ 2x̄k

∂xl∂x0 = 0 .

This is because the coordinate xk is only contained in the first part of the transfor-
mation function. Hence, the locally geodesic frame is nothing but a freely falling,
non-rotating system through point p. We call such systems local inertial frames.

1.8.4 Formulation of the Principle

Which meaning can such systems have for physics? All quantities entering our con-
siderations are smooth. If such a quantity vanishes at a point p, it is immeasurably
small in a whole neighborhood of p, too. This means: if we restrict ourselves to a
sufficiently small neighborhood in an arbitrary affine-connected manifold, then the
affine connection (or the geometry) is arbitrarily well approximated by a flat affine
connection. This can be visualized on the sphere: the smaller the neighborhood of
p is, the better it is approximated by the tangential plane. These considerations lead
to the following hypothesis:

Strong equivalence principle. No physical experiment, which is conducted
with an arbitrary but fixed precision within a freely falling, non-rotating box,
can detect the gravitational field of outer sources if the box is sufficiently small
and the total duration of the experiment is sufficiently short.

In other words, the influence of gravity on physical systems or processes can be lo-
cally transformed away or created with arbitrary precision by choosing an adequate
coordinate system. However, the systems or processes must be such that they are
sufficiently well localized in space as well as in time.

This principle is the precise way to state our claim that gravitation is an appar-
ent force. It possesses moreover a big practical importance. With its help we can
predict the influence of gravitation on arbitrary physical systems or processes, as
soon as we know how these systems or processes are described without gravitation
in curvilinear coordinates.

There are several weaker versions of this principle. If the “physical experiments”
are restricted in such a way that no experiments with gravity are allowed (i.e., the
gravitational field of the measuring device and of the tools used can be neglected in
the experiment), we speak about the Einstein equivalence principle. If we restrict the
experiments furthermore, so that we permit only the observation of trajectories of
test particles in mechanics, then we call it the (weak) Galilei equivalence principle.
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The Einstein equivalence principle will be the basis for the relativistic theory of
gravitation.

The equivalence principle (in each of the three versions) is an experimentally
extensively tested physical law [1, 2, 3] of all.

1.9 Parallel Transport

One of the most important tasks of the global inertial frame of Newton’s theory was
to make it possible to compare the values attributed to different physical quantities
at points that are far away from each other. Let us consider for instance the trajectory
xμ = xμ(λ ) of a mass point in an arbitrary reference frame in Newton space–time.
Its velocity at the time t1 = t(λ1) and at the time t2 = t(λ2) is ẋμ(λ1) and ẋμ(λ2),
respectively. Are these velocities equal or different? Similar questions are important
when considering the balance of momenta, etc. The recipe known from Newton’s
theory is: transform the velocity vectors into one and the same inertial frame and
compare the corresponding components. This kind of equality obviously is inde-
pendent of the chosen inertial frame due to the linearity of the transformation be-
tween two inertial frames. Hence it is possible to identify vectors at different points
in Minkowski space–time, so that one vector space emerges, which is common to
all points; this way it is also possible to combine vectors linearly at different points,
as we are used to from Minkowski space–time. This definition of equality can be
generalized to arbitrary tensors.

In differential geometry, tensors at different points, whose components with re-
spect to global geodesic coordinates are equal, are not called equal but parallel. The
term “equal” is reserved for equal tensors at equal points. This is why we want to
talk about parallel tensors in the following.

Whether or not two tensors at two different points of a flat affine-connected man-
ifold are parallel is determined by a global geodesic system. These systems are in
turn determined by the affine connection. But there is a direct way from the flat affine
connection to parallel tensors: the so-called parallel transport. We define the paral-
lel transport only for a vector. For other tensors the considerations are analogous.

Let thus (M ,Γ) be a flat affine-connected manifold, p and q two points at this
manifold, and {xμ} an arbitrary coordinate system. Let us choose a curve C con-
necting the two points, i.e., C : [λ1,λ2] �→ M ,C(λ1) = p and C(λ2) = q. Let C be
defined by the functions xμ(λ ) with respect to the coordinates {xμ}. Let moreover
V μ be a vector in p. This vector determines at every point of C, including q, a vector
that is parallel to it. The vector field obtained this way along C is represented by the
n functions V μ(λ ): these are its components with respect to {xμ} at the point C(λ )
for every value of λ . Vector field V μ(λ ) along C is called the parallel transport of
V μ along C.

We want to determine the parallel transport directly by means of Γμρσ . For this
purpose we introduce an arbitrary global geodesic system {x̄μ} around C. Since
Γ̄μρσ vanishes, it follows from the transformation rule (1.9) for the affine connection

Γμρσ = Xμν̄ X ν̄ρσ .
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According to the definition of parallelism, the components V̄ μ(λ ) of the parallel
transport with respect to {x̄μ} satisfy the following equations

dV̄ μ

dλ
= 0 .

We have
V̄ μ(λ ) = X μ̄ν V ν(λ ) .

Let us substitute the right-hand side of this equation for V̄ μ(λ ). After differentiation
we obtain

dV ν

dλ
X μ̄ν +X μ̄νρ ẋρV ν = 0 .

By multiplication with Xκμ̄ we find

dV κ

dλ
+
(

Xκμ̄ X μ̄νρ
)

ẋρV ν = 0 ,

hence
dV κ

dλ
+Γκνρ ẋρV ν = 0 . (1.30)

This is the desired relation. It is called parallel transport equation along C. Equa-
tion (1.30) represents a system of n ordinary linear differential equations of first
order for V ν(λ ), which are solved for the derivatives. Its solution is hence uniquely
determined by the initial value V κ(λ1) and we can thus obtain parallel vectors in
two arbitrary points directly from the values of Γμνρ .

Since the parallel transport is determined entirely by Γμνρ , it can be generalized
to arbitrary affine-connected manifolds.

Definition 7 Let (M ,Γ) be a n-manifold with affine connection. Let {xμ} be arbi-
trary coordinates, and Γμνρ the components of the affine connection with respect to
{xμ}. Moreover, a curve C shall be given by the functions xμ(λ ), and a vector V μ at
the point xμ(λ1). The vector field V μ(λ ) along C, which is uniquely determined by
the differential equation (1.30) and the initial value V μ , is called parallel transport
of V μ along C.

An example for such a parallel transport is the vector field, which is tangential to an
autoparallel. Indeed, the equation of an autoparallel is a particular case of the par-
allel transport equation. The vector that is transported is, in this case, the tangential
vector of the curve. This explains also the name “autoparallel”.

Is it now possible to define, using this parallel transport, parallel vectors at dif-
ferent points even on curved manifolds? A difficulty could be that two points can
be connected by different curves. Indeed, on curved manifolds the parallel transport
depends on the path:

Theorem 4 Let (M ,Γ) be a n-manifold with affine connection. Let an infinitesimal
quadrangle be given by its corners p = (xμ), q1 = (xμ + δxμ1 ), q2 = (xμ + δxμ2 ),
and r = (xμ+δxμ1 +δxμ2 ) in the coordinates {xμ}. The components of the curvature
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tensor in the point p with respect to {xμ} are denoted by Rμνρσ . Let the parallel
transport of an arbitrary vector V μ from p to r via q1 be given by V μ1 (r), via q2 be
given by V μ2 (r). Then the equation

V μ2 −V μ1 = RμνρσV νδxρ1 δxσ2 (1.31)

holds (up to second order in δx1,2).

Proof Let V μ be a vector at (xμ) and V μ + dV μ a parallel vector in an arbitrary
neighboring point (xμ + dxμ). For dV μ we find from the equation of the parallel
transport

dV μ = −ΓμρσV ρdxσ .

The parallel transport via q1 is assumed to be given by V μ(p), V μ1 (q1), V μ1 (r), the
parallel transport via q2 by V μ(p) V μ2 (q2), V μ2 (r) (Fig. 1.3). Then we have (actually
we should expand up to second order, but the end results are equal):

V μ1 (q1) = V μ(p)−Γμρσ (p)V ρ(p)δxσ1

and

V μ1 (r) = V μ1 (q1)−Γμρσ (q1)V
ρ
1 (q1)δxσ2 = V μ(p)−Γμρσ (p)V ρ(p)δxσ1

−
(
Γμρσ (p)+∂τΓμρσ (p)δxτ1

)(
V ρ(p)−Γραβ (p)Vα(p)δxβ1

)
δxσ2

= V μ(p)−Γμρσ (p)V ρ(p)δxσ1 −Γμρσ (p)V ρ(p)δxσ2

−∂τΓμρσ (p)δxτ1V ρ(p)δxσ2 +Γμρσ (p)Γραβ (p)Vα(p)δxβ1 δxσ2 +O3,

where O3 stands for higher order terms in δxτ1,2 (terms of order 3 and higher). For
the path via q2 we obtain the same expression, only the indices 1 and 2 have to be
exchanged. This way we find

V μ2 (r)−V μ1 (r) = (∂τΓμρσ −∂σΓμρτ +ΓματΓαρσ −ΓμασΓαρτ)δxτ1V ρ(p)δxσ2 ,

which is what we were looking for, qed.

Fig. 1.3 Parallel transport of
vector V along two different
ways
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From the proof it also follows that the parallel vectors in neighboring points
are uniquely defined and that they have equal components with respect to a locally
geodesic system. Thanks to the affine connection we can hence compare tensors
in neighboring points. This is one of the main features of the affine connection: it
establishes a connection between neighboring points. It is now also clear why the
acceleration can be defined by means of the affine connection.

To compare tensors at points of a space–time that are far away from each other,
we need special conditions; we shall come back to this later.

1.10 Exercises

1. A row of weights runs over two wheels with a difference in height given by l.
The weights, which are coming from below, each emit a photon with frequency
ν1 in the upward direction, thus lose rest mass. They get lighter and ascend
further upward where they absorb a photon (emitted by another weight and with
frequency ν2). This way they get heavier and pull the weights system down.
Question: Which redshift

z =
ν1 −ν2

ν2

is necessary to just avoid obtaining a perpetuum mobile?
2. A Gedankenexperiment: connect a mass point with negative mass −m through

a firm, massless bar with a second mass point of mass m > 0. The length of
the bar is assumed to be l. Calculate the motion of the system by means of the
standard formulas known from Newton mechanics and gravity theory. What can
be concluded from the result?

3. Consider a box of height l moving upward with constant acceleration a. A
source at the bottom of the box is sending a light signal to the top of the box with
the frequency ν1. Question: With which frequency ν2 is the signal absorbed at
the top? (To simplify things, please use all formulas, i.e., the equations of mo-
tion and the Doppler effect, in non-relativistic approximation!)

4. Find the concrete form of the transformation between two inertial frames ex-
pressed by the displacement T0 of the origin of the time, the time-dependent
displacements rk(x0) of the origins of the equal-time planes, and the time-
dependent rotation Okl(x0) of the spatial axes.

5. Use the results of the previous exercise and calculate the coefficients Γμρσ in the
equation

ẍμ +
3

∑
ρ=0

3

∑
σ=0
Γμρσ ẋρ ẋσ = 0 ,

which describes free motion with respect to a non-inertial frame K, and deter-
mine their relation to the known apparent forces. Prove the correctness of the
following definition for the angular velocity ωk(x0):
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∑
r

Okr(x0)Ȯlr(x0) =∑
r
εrklωr(x0) .

6. Identify the free and the dummy indices in the following expressions

Cα Dα = 5 ; Λρσ Aσ = Bρ ; Tαμλ AμCγλ = Qαγ .

How many different equations does each expression represent?
7. Given are the following numeric values:

Aμ = (5,0,−1,−6) ,

Bμ = (1,−2,4,0) ,

Cρσ =

⎛

⎜⎜
⎝

1 0 2 3
5 −2 −2 0
4 5 2 2

−1 −1 −3 0

⎞

⎟⎟
⎠ ;

Compute: Aρ Bρ , AρCρσ for all σ , AαCαβ for all β , and Aλ Bκ for all λ and κ .
8. Which of the following relations satisfy the conditions of a coordinate transfor-

mation?
(x,y) �→ (ξ ,η)?

(a)
ξ = x , η = 1 ,

(b)

ξ =
√

x2 + y2 , η = arctan
(y

x

)
,

(c)
ξ = logx, η = y .

9. Determine the metric on the following surfaces in E
3:

(a) x2 + y2 = 1,
(b) x2 + y2 − z2 = −1;

(x,y,z) are Cartesian coordinates.
10. How does a tensor of type (0,0) transform?
11. Let Dμν be a tensor of type (0,2). Show that∑n

μ=1 Dμμ is in general not a tensor.
12. Prove that the quantity whose components form the following table with respect

to an arbitrary coordinate system is a tensor:
⎛

⎜⎜
⎜
⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

...
0 0 · · · 0 1

⎞

⎟⎟
⎟
⎠

(n-dimensional unit matrix). Of which type is this tensor?
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13. Let Tμν be a tensor of type (0,2). Its components form an n×n matrix:

⎛

⎜
⎝

T11, · · · , T1n
...

...
Tn1, · · · , Tnn

⎞

⎟
⎠

and let ⎛

⎜
⎝

T 11, · · · , T 1n

...
...

T n1, · · · , T nn

⎞

⎟
⎠

be its inverse matrix. Show that the quantity T μν defined this way is also a
tensor. Of which type is it?

14. How does det(T μν ) transform, where T μν is a tensor of type (1,1)?
15. Compute the affine connection Γμρσ on the surface of a sphere of radius r = 1.

Show that the great circles are solutions for the geodesic equations. Hint: the
function ϑ(λ ) can be directly computed from the definition of a great circle, if
the function ϕ(λ ) is chosen arbitrarily (this choice is arbitrary and this fact can
be used to obtain simplifications).

16. Let W μν
ρστ be a tensor of type (2,3) and let the quantities U , V , and X be defined

as follows:

Uμν
ρστ = W μν

στρ ;

V μνρστ = W ρν
μστ ;

Xμνρστ = W νμ
ρστ .

This is assumed to hold in arbitrary coordinates. Which of the quantities U ,
V , and X is a tensor? Under which conditions does one of the new quantities
equal W?

17. Compute the curvature tensor for the two-dimensional metric with components

g11 = ±1 , g12 = g21 = 0 , g22 = f (x1) ,

where f (x1) is an arbitrary function.

(a) For which f does the curvature vanish?
(b) For which f does the curvature admit the form

Rμνρσ = K(δ μρ gνσ −δ μσ gνρ) ,

where K = K(x1,x2) is a function of the coordinates (depending on f )? K
is called “Gauss curvature”.

18. Is it possible to find coordinates on the well-known surface of a sphere such
that the metric admits the form as given in Exercise 17? Which property has the
Gauss curvature?
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19. The three-dimensional Minkowski space–time is the metric manifold (R3,ηkl),
where

η =

⎛

⎜
⎝

−1 0 0

0 1 0

0 0 1

⎞

⎟
⎠ .

Study the surfaces

(a) (x0)2 − (x1)2 − (x2)2 = R2,

(b) (x0)2 − (x1)2 − (x2)2 = −R2.

Find coordinates such that the metric on the surfaces admits the form as given
in Exercise 17. Compute the Gauss curvature. Hint: try “spherical coordinates”
with hyperbolic functions (sinhθ or coshθ ).

20. Compute the numerical value of the curvature of the Cartan–Friedrichs space–
time on the Earth’s surface (in the “spherically symmetric approximation”).

21. Determine the concrete form of the parallel transport equation for the vector
V μ = (1,0) along the curve ϑ(λ ),ϕ(λ ) given by

ϑ = a(= const) , ϕ = λ ,

in a metric manifold with metric

ds2 = dϑ 2 + f (ϑ)dϕ2 .

22. Assume that the manifold in Exercise 21 is such that the points (ϑ ,0) and
(ϑ ,2π) coincide (similar to what happens on a sphere). Calculate the paral-
lel transport along the now closed curve λ ∈ [0,2π] from Exercise 21 for the
following values for the function f (ϑ)

(a) f = R2ϑ 2,

(b) f = R2 sin2(ϑ/R),

(c) f = R2 sinh2(ϑ/R).

Which form do the three surfaces have?
How does the transport depend on the parameter a?

23. Let M be an arbitrary n-manifold, {xμ} coordinates on it, and C1 and C2 two
curves given by

C1 : xμ = uμ(λ ) , λ ∈ [0,1]

C2 : xμ = vμ(λ ) , λ ∈ [0,1] ,

where uμ(λ ) and vμ(λ ) are 2n arbitrary functions, which satisfy

uμ(1) = vμ(0) , ∀μ ;
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moreover, let

V μ . . . be a vector in uμ(0);
V μ1 . . . be parallel to V μ in uμ(1) along C1;
V μ2 . . . be parallel to V μ1 in vμ(1) along C2.

Show that:

(a) V μ2 is parallel to V μ in vμ(1) along the composite, piecewise smooth curve
C given by

xμ = zμ(λ ) , λ ∈ [0,2] ,

where

zμ(λ ) = uμ(λ ) , λ ∈ [0,1] ,

zμ(λ ) = vμ(λ −1), λ ∈ [1,2] .

(b) V μ is parallel to V μ1 along the curve C−1 defined by

xμ = uμ(1−λ ) , λ ∈ [0,1] .

24. Use an inertial frame of the Newton theory as coordinate system in a Cartan–
Friedrichs space–time with a fixed, arbitrary gravitational potential Φ(�x). Study
the parallel transport in the coordinates

(a) along arbitrary spatial curves, i.e., x0 = const, and of arbitrary vectors;
(b) along a closed curve, which consists of two free falls and two spatial curves;

consider in particular the 4-velocity of the free falls.
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Chapter 2
Relativistic Particle Dynamics
in Gravitational Fields

2.1 Relativistic Gravity

In Chap. 1 we learned that Newtonian gravitation can be considered as a geometry
of space–time. In addition we learned the fundamentals of the corresponding math-
ematical apparatus, differential geometry. In this chapter we want to apply those
methods to relativistic particle dynamics. In contrast to the non-relativistic case,
this will lead to a new theory, the so-called general relativity, which will modify
the theory of special relativity as well as the theory of Newtonian gravitation. This
means that general relativity predicts new physical phenomena.

2.2 Geometry of Minkowski Space–Time

In this section we want to formulate well-known properties of the relativistic space–
time in terms of differential geometry. Special relativity is assumed to be known (for
an introduction, see [1]). We choose the units such that c = 1.

Special relativity is based on inertial frames, exactly as is the case in Newton’s
theory. These privileged reference frames are again determined by free motion.
Physically they can in principle be realized by the following devices:

1. a freely floating radar equipment,
2. an ideal clock,
3. non-rotating orthonormal axes of coordinates (measuring rods, gyroscopes, etc.).

The coordinates {x̄μ}, which correspond to such an inertial frame and describe an
event in this inertial frame, can be measured by means of this equipment. A transfor-
mation between the coordinates, which correspond to two different inertial frames,
determines an element of the Poincaré group

x′μ = Λμν xν +aμ ,

Hájı́ček, P.: Relativistic Particle Dynamics in Gravitational Fields. Lect. Notes Phys. 750,
39–92 (2008)
DOI 10.1007/978-3-540-78659-7 2 c© Springer-Verlag Berlin Heidelberg 2008
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where Λμν is a Lorentz matrix, i.e.,

ημνΛμρΛνσ = ηρσ .

Vice versa, every element of this group gives rise to an inertial frame if we apply
this transformation to an arbitrary inertial frame.

The time intervals (in particular the simultaneity) and the distances of events
in Minkowski space–time are relative: they depend on the choice of the inertial
frame. The only absolute quantity (i.e., the only quantity that does not depend on
the chosen reference frame) that is related to time intervals and distances is the so-
called interval. The interval I between two events with coordinates {x̄μ} and {ȳμ}
with respect to an inertial frame is

I =
(
x̄0 − ȳ0)2 −

(
x̄1 − ȳ1)2 −

(
x̄2 − ȳ2)2 −

(
x̄3 − ȳ3)2

.

The geometric meaning of the interval is the following. If the interval between two
events is positive (I > 0), then there exists an inertial frame where the differences
of the spatial coordinates vanish

x̄1 − ȳ1 = x̄2 − ȳ2 = x̄3 − ȳ3 = 0

and I = T 2, where T equals the time difference between these two events happening
at the same position. If I < 0, there exists an inertial frame where the two events
occur at the same time, x̄0 − ȳ0 = 0, such that I = −d2, where d is the distance of
these two simultaneous events. Finally, if I = 0, the two events can be connected by
a light signal.

Another geometric structure is determined by free motions; they play a crucial
role for the definition of inertial frame. We already know the following properties
of free motions:

1. with respect to an inertial frame, every free motion has the form

x̄μ = āμλ + b̄μ ,

where āμ and b̄μ are constant 4-tuples and λ is a parameter;
2. the 4-tuple āμ satisfies the inequality:

(
ā0)2 −∑

k

(
āk
)2

≥ 0.

We now want to replace these non-local geometric objects by local differ-
ential geometric objects such that all inertial frames can be reconstructed out
of those new objects (and this way the whole geometry of Minkowski space–
time). All quantities and equations are to be written in a way that suggests their
transformation properties with respect to arbitrary (non-linear) coordinate trans-
formations.
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We can consider the Minkowski space–time M as a manifold; there are global
coordinates, e.g., those of an inertial frame, which map M to R

4. This way the
manifold is defined!

Then the interval determines a Lorentzian metric gμν(x) in every point of M by
its components with respect to the inertial frame:

ḡμν(x̄) =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ ∀x̄ ∈ M . (2.1)

(The elements of the matrix on the right-hand side are often denoted by ημν .) Note
that this equation is valid at every point of M , so that the metric has constant com-
ponents with respect to the inertial frame. This metric is clearly non-degenerate and
independent of the inertial frame chosen to define it. This follows from the fact that
the Poincaré transformations leave this tensor field invariant. The metric (2.1) is
called Minkowski metric.

We want to emphasize that the Minkowski metric and the inertial frame con-
nected with it are determined only by observation and measurements. Why? Are
there other Minkowski metrics on R

4? The surprising answer is “Yes”! Let us con-
struct two non-equivalent Minkowski metrics on R

4.
As a first step we assume that the metric gμν is given by its components

ημν with respect to some coordinates xμ . These coordinates thus define an iner-
tial frame for the metric gμν . In the second step we choose a coordinate system
x′μ , such that this one is not connected to xμ by a Poincaré transformation. For
instance,

x′μ = Aμν xν , (2.2)

where Aμν is a constant, invertible matrix, which satisfies

ηρσAρμAσν �= ημν ,

but it is arbitrary apart from this condition. By assumption we have

g′μν �= ημν .

In a third step we introduce a new tensor field hμν by defining its components
with respect to the coordinates x′μ :

h′μν = ημν . (2.3)

Obviously hμν is a Minkowski metric on R
4, since there are coordinates, namely

x′μ , in which (2.3) holds. But gμν �= hμν , since the components of these two tensor
fields do not agree with respect to the coordinates x′μ . Hence, the construction is
finished.
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Let us remark that the transformation (2.2) can be chosen to be much more gen-
eral and the construction would still work: it only has to be an invertible transfor-
mation (non-linear), which maps R

4 to R
4. There are hence many non-equivalent

Minkowski metrics on R
4.

The Minkowski metric can be used to classify vectors Xμ at a point x. Namely,
depending on the sign of the expression gμν(x)XμXν , they can be separated into
time-like, light-like, and space-like vectors. The “length” of a curve in Minkowski
space–time is only well defined using this metric, if the curve is not space-like,
i.e., its tangent vectors in every point are not space-like. Then the coordinate-
independent integral

τ12 =
∫ λ2

λ1

dλ
√

gμν ẋμ ẋν (2.4)

is real. Its physical meaning is the proper time along the curve passing from λ1 to
λ2; it is the time measured by an ideal clock, which moves along this curve.

The free motions can again (as in Newton’s theory) be described by a differential
equation; with respect to inertial frame {x̄μ}, their trajectories are given by

¨̄x = 0. (2.5)

We have however the additional condition ḡμν ˙̄xμ ˙̄xν ≥ 0. The differential equation
(2.5) determines an affine connection. With respect to the inertial frame, the corre-
sponding components Γ̄μρσ are equal to zero. But not all autoparallels of this affine
connection are free motions! Nevertheless we can determine this affine connec-
tion by studying only the free motions (exercise). The affine connection determined
this way is globally flat; it admits global geodesic coordinates (example: an inertial
frame).

We have now identified two geometrical objects: the Minkowski metric gμν(x)
and the free-motion affine connection Γμρσ (x). It can be shown that these objects are
not independent: Γμρσ is the metric affine connection corresponding to the metric
gμν(x). Proof: In an arbitrary inertial frame, we have

Γ̄μρσ = 0

and

{μρσ} =
1
2

ḡμν(∂̄ρ ḡσν + ∂̄σ ḡρν − ∂̄ν ḡρσ ) = 0,

since ḡρσ is constant for all ρ and σ . The components of the metric affine connection
and the affine connection, which is defined by the free motions, are therefore equal
in one coordinate system. They obey, in addition, the same transformation law and
therefore have to be equal in every coordinate system:

Γμρσ = {μρσ}. (2.6)

Equation (2.6) means that the whole geometry of Minkowski space–time is con-
tained in a single object—in the Minkowski metric. Let us summarize: the geometry
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of Minkowski space–time is completely determined by a pair (M ,g), where M is a
4-manifold and g is a metric on M . The metric g on M is called Minkowski metric,
if there exists a coordinate chart h : M �→R

4 such that (1) h has as domain the whole
manifold M (global chart) and (2) the components gμν(x) of the metric satisfy with
respect to this chart: gμν(x) = ημν .

In particular, also the inertial frames are defined by the metric. Obviously h it-
self defines an inertial frame. Let us denote its coordinates by xμ . All other inertial
frames must be global geodesic systems and therefore they can be obtained from xμ

by a linear transformation

xμ = Aμν x′ν +Bμ ,

where Aμν and Bμ are constant matrices. The corresponding transformation of the
metric reads

g′μν = AρμAσν ηρσ .

But the system x′μ is only an inertial frame, even if g′μν = ημν holds. Then Aμν must
be a Lorentz matrix, since the defining equation for a Lorentz matrix is

ημν = AρμAσν ηρσ .

This way we obtain all inertial frames out of the local object gμν , and thus the
interval too.

At the end of this section, we want to clarify some technical issues. The free mo-
tions are geodesics of the Minkowski metric. When deriving the geodesic equation,
we have to vary the integral (2.4). Undertaking the variation, we see that a square
root appears in the denominator. As long as we are dealing with a time-like curve,
there is no problem—the square root is positive. For light-like curves, the variation
cannot be done. One way out, which is often used, is to consider a different variation
principle of the dynamics, namely the one with the action

S =
1
2

∫
dλ gμν ẋμ ẋν .

Indeed, the corresponding Euler–Lagrange equation is

∂ρ
(

1
2

gμν ẋμ ẋν
)
− d

dλ
(gμρ ẋμ) = 0 ,

and this yields directly the equation of the autoparallels:

ẍρ +{ρμν}ẋμ ẋν = 0 . (2.7)

We therefore obtain the right dynamics, including the affine parameter.
The Euler–Lagrange equations corresponding to the above Lagrangian offer the

fastest way to compute the Christoffel symbols. We just have to solve them for the
second derivatives of the coordinates and read off the Γs.
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We note that the canonical momentum [2]

pμ =
∂L
∂ ẋμ

= gμρ ẋρ

is closely related to the tangent vector; we can even write

pμ = ẋμ . (2.8)

Here we used a convention: in Lorentzian geometry, where the metric is at our
disposal, we can raise and lower the indices—in doing so, the quantity is always
denoted by the same letter. So the covariant momentum pμ and the contravariant
momentum pμ are connected by the relations pμ = gμν pν and pμ = gμν pν .

It is possible to obtain for the canonical momentum the value of the 4-momentum
pμ , if the curve is parameterized by the so-called physical parameter. For massive
particles, we have for example

pμ = μ
dxμ

ds
,

where s is the proper time and dxμ/ds is the so-called 4-velocity. In this case we
obtain for the physical parameter λ the equation

ds
dλ

= μ . (2.9)

For light-like particles, the parameter λ has to be chosen in such a way that

ẋμ = hkμ ,

where h is the Planck constant and kμ is the wave vector.

2.3 Particle Dynamics in General Relativity

General relativity is a relativistic theory of gravitation, which we will construct in
the following. We use the same methods that led us in the non-relativistic case from
the Newton to the Cartan–Friedrichs theory: we modified the geometric structure
of Newton space–time without gravity—the affine connection—in such a way that
the free fall in a gravitational field could be represented as autoparallel of the new
affine connection. Because of the relative acceleration between two freely falling
particles, we lost the existence of global inertial frame. The properties of inertial
frames could only be recovered approximately in small, freely falling, non-rotating
boxes, and only in the case where the measurement times were not too long.

Therefore we now want to modify the geometric structure of Minkowski space–
time without gravity to obtain gravitational effects. For simplicity we want to try to
make this modification in such a way that the new affine connection is also metric.
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If we want to modify an affine connection this way, we cannot leave the metric
unchanged. This time, however, the modification to be made is not determined in
advance: the “relativistic” free falls are not given by any formula known so far.

One point we can start from is the existence of local inertial systems. The space–
time is a 4-manifold M with metric gμν , which has the following properties: for
every point p ∈ M , there exists a coordinate system {xμ} such that the correspond-
ing components of the metric and the affine connection satisfy:

gμν(p) = ημν , (2.10)
{ρ
μν
}

(p) = 0. (2.11)

We call such systems again local inertial frames. In a small neighborhood of p, the
metric and the affine connection then have nearly the same form as in an inertial
frame of special relativity. We abandon the requirement that there exist coordinates
such that (2.10) and (2.11) hold everywhere on the whole manifold as in special
relativity. As we will see later, the new ansatz allows for a wide class of space–
times, which is rich enough to describe all known gravitational fields.

The gravitational field can thus be interpreted as the tensor field gμν(x) on a
manifold M ; different metric fields therefore imply different geometries; the mani-
folds are only restricted by the condition that they have to admit such a metric. This
allows for a wide class of topologies, not only the trivial topology of R

4 [3]. The
metric gμν therefore gets two different functions: first to describe the geometry of
space–time as in special relativity and second to describe the gravitational field.

We want to formulate our ansatz also in a mathematically clean way. For this
purpose, we first have to introduce the notion of the signature of a metric.

Definition 8 Let M be an n-manifold with metric gμν and p a point in M . If there
exist coordinates {xμ} such that

gμν(p) = Diag(+1, . . . ,+1,−1, . . . ,−1)

with n+-times +1 and n−-times −1, where Diag(a1, . . . ,an) is an abbreviation for
the diagonal matrix with the elements a1, . . . ,an sitting on the diagonal, then the
metric has the signature σ = n+ − n− in p. (Zeros are not allowed because the
metric has to be regular in p.)

The signature does not depend on the way the metric is transformed to the above
diagonal form. This is because the transformation of the metric at a point p is a real
general linear transformation:

g′μν(p) = Xρμ ′ (p)Xσν ′(p)gρσ (p) .

It is known from linear algebra [4] that every symmetric matrix can be brought by
such a transformation to the form

Diag(+1, . . . ,+1,−1, . . . ,−1,0, . . . ,0) ,
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and that the number of +1, of −1 and of 0 is an invariant of the matrix (see quadratic
forms in [4]). For metrics that are regular everywhere, σ is even independent from
the point! (Exercise.)

As soon as we know the signature σ of the metric and the dimension n of the
manifold, we can determine the numbers n+ and n− from

n+ +n− = n, n+ −n− = σ .

We can hence formulate the requirement (2.10) as follows: the metric has the signa-
ture −2 at every point of M . The requirement (2.11) taken alone is always satisfied.
The corresponding theorem was proved in Chap. 1.

We now want to prove that both requirements (2.10) and (2.11) are satisfied if
the signature of the metric is −2. The first step is to find geodesic coordinates {x̃μ}
for the point p. Then we have

{̃ρ
μν
}
(p) = 0 .

In these coordinates, g̃μν(p) does not necessarily have to be equal to ημν . The sec-
ond step relies on the observation that a linear transformation of the coordinates
does not affect the validity of (2.11). Indeed, the second term on the right-hand
side of the transformation formula (1.9) for the components of the affine connec-
tion vanishes if the transformation is linear, i.e., for every transformation of the
form

x̃μ = Aμρ x̄ρ

where Aμρ is a constant matrix, we obtain

{ρ
μν
}
(p) = 0 .

The third step shows the existence of an appropriate matrix Aμρ . The fact that the
metric g̃μν has, at the point p, the signature −2 and that the dimension of the mani-
fold is 4 means that there is a real regular matrix Aμρ such that

AρμAσν g̃ρσ = ημν ;

therefore the existence is shown.
It follows that we can formulate our ansatz as follows.

Postulate 2.1 The space–times of general relativity are differentiable 4-manifolds
with metrics gμν , which have at every point the signature −2.

We can consider the above as the first fundamental postulate of general relativity.
The local inertial frame will play an important role in what follows. We can

characterize it directly by properties of the metric because the following identity
holds (exercise)

∂ρgμν = gμσ
{
σ
ρν

}
+gνσ

{
σ
ρμ

}
. (2.12)
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It follows that a local inertial frame x̄μ in p ∈ M can be characterized in an equiva-
lent way by the relation

ḡμν(p) = ημν ,
∂ ḡμν
∂ x̄ρ

(p) = 0 .

In the given event p, the metric has the Minkowski form and its first derivatives
vanish. The local inertial frames whose existence is guaranteed by Postulate 1 are
physically interpreted as freely falling non-rotating reference frames, exactly as in
the non-relativistic theory.

We then use the Einstein equivalence principle to determine the effect of gravi-
tation on arbitrary physical phenomena. The equivalence principle can be adopted
without any change from the first chapter. It is considered as a heuristic principle.
We apply the equivalence principle often in the form of the so-called principle of
the general covariance. This works in two steps.

1. We assume that a description of special relativity for a situation without grav-
ity exists in form of a local (i.e., concerning neighboring points) equation. We
transform this equation into general curvilinear coordinates such that it admits
a covariant form, i.e., the equation holds in this form in all coordinate systems
(also in an inertial frame). We assume in addition that the equation in this new,
covariant form contains no higher derivatives of the metric than those of the first
order.

2. We postulate that the equation holds in this form in the curved space–times of
general relativity. This way we obtain a very definite information about how the
phenomena under consideration are influenced by an arbitrary gravitational field.
It is also clear that the Einstein equivalence principle is satisfied: in a local inertial
frame, the first derivatives of the metric vanish and its components have the same
form as in an inertial frame of special relativity.

We note that the expression “covariant” has two very different meanings in math-
ematics: covariant indices, tensors, etc., are lower indices. Covariant equations are
equations that are satisfied in arbitrary coordinate systems. A covariant equation can
also contain contravariant tensors.

If the coupling of other systems to gravity is defined in this way, then it is called
minimal coupling. We now want to transfer different equalities and inequalities from
special relativity to general relativity.

The classification of vectors can be adopted without changes; the sign of the
expression

gμν ẋμ ẋν

determines whether a curve is time-, light-, or space-like. The meaning of this clas-
sification is shown by the following postulate:

Postulate 2.2 Massive (massless) test particles always move-also under the influ-
ence of forces-along time-like (light-like) curves.
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The causal structure of space–time, which determines which events can have causal
influence on a given event, is also given by the metric. Hence it is a part of the
space–time geometry.

For time measurements in the absence of gravitation, (2.4) holds; it is already
written in the covariant form and does not contain derivatives of the metric. In the
absence of gravity, we therefore have (minimal coupling of the clock mechanism)
the following:

Postulate 2.3 The proper time ds between λ and λ + dλ along the time-like curve
xμ = xμ(λ ) of an ideal clock, which is measuring it, reads

ds = dλ
√

gμν ẋμ ẋν . (2.13)

We will see that this postulate reproduces in the correct way the redshift in a gravi-
tational field.

For the free motion (no forces act) “in the absence of gravitation”, (2.7) holds.
It already has a covariant form and contains only components of the metric and its
first-order derivatives. It can be derived from the variation principle of the same
form as the one in flat space–time. In the presence of gravity, we therefore have the
following:

Postulate 2.4 The trajectory xμ(λ ) of a massive or massless test particle, on which
no forces (free fall) act, satisfies (2.7):

ẍρ +
{ρ
μν
}

ẋμ ẋν = 0 .

Its 4-momentum pμ(λ ) is proportional to the velocity

pμ = kẋμ , (2.14)

where k is a constant number, depending on the choice of parameter of the autopar-
allel.

First it follows that the curve extremizes the action:

S =
∫ λ2

λ1

dλL ,

where

L =
1
2

gμν(x(λ ))ẋμ(λ )ẋν(λ ) . (2.15)

Second, k̇ = 0 along the trajectory of a freely falling test particle. A solution to (2.7)
is uniquely determined by the initial data

xμ(λ0) = xμ0 , ẋμ(λ0) = pμ0 , (2.16)

where pμ0 is the 4-momentum of the test particle at the initial point xμ0 and the
trajectory is then parameterized by the physical parameter. The tangent vector and
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thus also the canonical momentum undergo a parallel transport. This is only true for
the free fall. All test particles therefore move along the geodesics of the metric gμν .

For photons we will study only free motions or scattering. For massive particles,
we want to consider in addition accelerated motions. For this purpose, we still need
the following two postulates.

Postulate 2.5 The equation of motion of a massive particle is generalized to

dpμ

ds
+
{μ
ρσ
}

pρ
dxσ

ds
= f μ , (2.17)

where f μ is the sum of all acting 4-forces (except for gravitation), pμ is the
4-momentum of the particle,

pρ := μ
dxρ

ds
,

s is the proper time along the trajectory of the particle, and μ is the mass.

It follows that (1) gμν pμ pν = μ2; (2) If the mass is constant, μ = const (this is not
self-evident, e.g., for rockets this is not true!), then the 4-force satisfies the equation

gμν f μ pν = 0 , (2.18)

and vice versa. We can prove this by multiplying (2.17) with gνμ pν and by summing
over μ :

gμν f μ pν = gνμ pν
dpμ

ds
+gνμ pν

{μ
ρσ
}

pρ ẋσ

= gμν pν ṗμ +
1
2

(
gμν

{μ
ρσ
}

+gμρ
{μ
νσ
})

pν pρ ẋσ

=
1
2

(
gμν ṗμ pν +gμν ṗν pμ +∂σgνρ pν pρ ẋσ

)

=
1
2

d
ds

(
gμν pμ pν

)
=

1
2

d
ds
μ2 . (2.19)

We then have, in particular for the autoparallels

gμν ẋμ ẋν = const ; (2.20)

if the initial condition (2.16) is satisfied then

gμν ẋμ ẋν = μ2 (2.21)

holds, where μ stands for the mass of the test particle. The mass is then conserved
throughout the motion. It also follows from the above that the autoparallels remain
time-like (light-like) if they started time-like (light-like). Equation (2.20) is an im-
portant conservation law; we will use it often.

For scattering processes we have the following:

Postulate 2.6 If r particles with 4-momenta p1, . . . ,pr are scattered at the point x,
such that s particles with 4-momenta qμ1 , . . . ,qμs result, then
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Fig. 2.1 Scattering of test
particles
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μ

pμ1 + . . .+ pμr = qμ1 + . . .+qμs

holds in x.

These first six postulates and the interpretation of the local inertial frame as a
freely falling, non-rotating system with orthogonal axes shall be sufficient for us at
the moment. They suffice to explore the structure of the curved space–time and to
gain a first understanding of it. They concern, however, only the particle dynamics
in the gravitational field. We still have to postulate the dynamics of the fields in the
gravitational fields as well as the dynamics of the gravitational field itself, to make
the theory complete (Fig. 2.1).

2.4 Local Measurements

The measurements that an observer is making in his close space–time neighbor-
hood form the basis for all observations. If we observe for instance an object that
is far away, we then analyze the light signals that reach our observatory. The whole
observation can hence be traced back to local measurements.

In this section we will get to know an often used approximation, which is to
consider “small” neighborhoods as “infinitesimal”. Such a method is very sug-
gestive for physicists. Its strict mathematical justification in differential geome-
try is, however, tedious. We want to do without this justification here; it can be
found in [5].

2.4.1 General Reference Frame

From our experience with Newton’s theory and special relativity, we are used to con-
sidering a coordinate system simply as a physical reference frame, i.e., to relate it to
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some measurement apparatus for determining the coordinates. In general relativity,
the situation is more complicated. In general the coordinates carry information only
about the topological and differentiable structure of space–time, and have nothing
to do with any physical reference frame! The choice of the coordinates in general
relativity is comparable to choosing a gauge in electrodynamics rather than to the
choice of a reference frame. This will be explained more precisely in Sect. 4.3.
Components of tensors with respect to coordinates have no measurable meaning;
measurable is only what is invariant with respect to transformations of the coordi-
nates. This fact is also reflected in the dimension of the coordinates: in general, they
are dimensionless, and the metric carries the dimension of length squared.

In a similar way as the gauge, the coordinates can be chosen such that they sim-
plify the problems under consideration. For example they can be adapted to a real
reference frame. In such cases, the coordinates can get a non-trivial dimension, and
the dimensions of different components of the metric can differ. For instance, coor-
dinates of a local inertial frame have dimension of length (c = 1!), and all compo-
nents of the metric are dimensionless, just as is the case in special relativity and in
inertial frames.

Let {xμ} be a coordinate system and let gμν be the corresponding components
of the metric. In this section we restrict ourselves to systems whose x0 trajectories
are time-like. The x0 curves are those with the parameter representation

x0 = λ , xk = xk
0, k = 1,2,3 ,

where xk
0 are arbitrary constants. The tangent vector ẋμ has the components

ẋμ = (1,0,0,0) . (2.22)

The curves are time-like:
gμν ẋμ ẋν > 0 ,

which implies
g00 > 0 . (2.23)

If we put on each of these curves an observer or a mass point, these observers
then fill the space–time in a dense way. Sometimes people speak about “observer
dust” or “reference fluid”. This reference fluid should be sufficiently “thin” for its
influence on the geometry of space–time to be neglected. The three numbers xk can
be considered as the name of an observer or of a mass point; a choice for the coor-
dinate x0 then fixes an event for every observer. Such a coordinate system is called
general reference frame. The values of the coordinates corresponding to different
events are conventions within the family of observers; for instance one observer can
emit periodically a radio signal, which determines everywhere particular values for
x0. We leave these coordinates arbitrary.

If a “puritan” was asked to describe such a reference frame, he would have to
leave the coordinates arbitrary. He then would have to represent our reference frame
by a family of curves (congruence, see [5]), which are parameterized by a time
parameter t; such a structure would then be coordinate independent.



52 2 Relativistic Particle Dynamics

2.4.2 Proper Time

With an ideal clock, the observer measures the time interval ds between the two
nearby values x0 and x0 +dx0. Equation (2.13) yields

ds =
√

gμν ẋμ ẋνdλ =
√

g00dx0 .

This way the component g00 of the metric can in principle be measured:

g00 =
(

ds
dx0

)2

. (2.24)

2.4.3 Radar Measurement

The observer (xk) sends a radar signal at the time x0 (event p with coordinates
(x0,xk)) to his neighbor (xk + dxk), who reflects this signal and communicates the
time value (x0 + dx0), which is measured in his coordinate system and indicates
the moment the signal arrived (event q with coordinates (x0 + dx0,xk + dxk)) there.
The echo reaches the observer (xk), which is described by the event r with coordi-
nates (x0 +Δx0,xk). The (infinitesimal) coordinate differences read (Fig. 2.2)

xμ(q)− xμ(p) =
(

dx0,dxk
)

,

xμ(r)− xμ(q) =
(
Δx0 −dx0,−dxk

)
,

and hence form light-like vectors. The following two equations are therefore
satisfied

g00(dx0)2 +2g0kdx0dxk +gkldxkdxl = 0,

g00(dx0 −Δx0)2 +2g0k(dx0 −Δx0)dxk +gkldxkdxl = 0 .
(2.25)

Fig. 2.2 Radar measurement xκ xκ+dxκ

x0 p

x0 + Δx0

2
x0+dx0
q

x0+ Δx0 r
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Subtracting the second equation from the first leads to

g0kdxk = g00

(
1
2
Δx0 −dx0

)
. (2.26)

If we calculate dx0 from (2.26) and insert it back in (2.25), we obtain

− ĝkldxkdxl = g00

(
1
2
Δx0

)2

, (2.27)

where we used the abbreviation:

ĝkl := gkl −
g0kg0l

g00
. (2.28)

Equations (2.26), (2.27), and (2.28) can be used to determine the components g0k

and gkl of the metric from the measured values for g00, dx0, and Δx0, and from the
known values for dxk. In order to do so, it is necessary to carry out the measure-
ment simultaneously with six appropriately chosen neighbors. All components of
the metric with respect to these general reference frames can hence be measured in
principle. Next we want to find out the geometric meaning of g0k and ĝkl .

2.4.4 Simultaneity

We define in general relativity: two events with coordinates
(

x0 +
1
2
Δx0,xk

)
,

(
x0 +dx0,xk +dxk

)

are simultaneous for the observer (xk). This definition is as in special relativity but
is now only true for nearby events. Hence, if dx0 = 1

2Δx0, then both time coordinates
are at the instant x0 synchronous. Equation (2.26) then yields g0kdxk = 0. Hence the
quantity g0kdxk is a measure of how asynchronous the time coordinates of the two
observers (xk) and (xk +dxk) are.

The condition of simultaneity of nearby events for the observer (xk) can equiva-
lently be formulated by noting that the infinitesimal vector dlμ ,

dlμ =
(

dx0 − 1
2
Δx0,dxk

)
, (2.29)

which connects the two simultaneous events, is orthogonal to the 4-velocity of the
observer. This is because (2.26) says that

g00

(
dx0 − 1

2
Δx0

)
+g0kdxk = 0 .
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But this is because of (2.29) being equivalent to

g0μdlμ = 0 ,

and (2.22) then gives
gμν ẋμdlν = 0 .

The vectors, which are orthogonal to their 4-velocity, are hence spatial for the ob-
server.

2.4.5 Distances

From the above radar measurement, we also obtain the distance da between the
observers (xk) and (xk + dxk). In our case da is half of the proper time between the
instants x0 and x0 +Δx0 (multiplied by the speed of light):

da =
1
2
√

g00Δx0 .

Then we obtain from (2.27) that

da2 = −ĝkldxkdxl .

The metric ĝkl hence measures the momentary distance of the observers (xk) and
(xk +dxk). We can calculate this distance also directly from gμν ; namely, it is equal
to the length of the vector dlμ (exercise).

Summarizing, we can therefore say that the metric in general relativity is not
a purely formal object but is determined by measurements; this is in fact, locally,
exactly like the Minkowski metric.

2.4.6 Spectra and Directions

Let us consider an observer with trajectory xμ(λ ). Its 4-velocity eμ(0) at the point λ0

of its trajectory satisfies
eμ(0) = Nẋμ(λ0) ,

where the normalization constant N is determined by

gμνeμ(0)e
ν
(0) = 1 .

The observer perceives those directions orthogonal to eμ(0) as spatial. The observer
can choose three axes out of those, which are mutually orthogonal, and can represent
them by the unit vectors eμ(k),k = 1,2,3. The four vectors eμ(α),α = 0,1,2,3, then



2.5 Stationary Space–Time 55

Fig. 2.3 Frequency and
directions
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satisfy the equations

gμνeμ(α)e
ν
(β ) = ηαβ . (2.30)

The 4-tuple of vectors eμ(α) constructed this way is called vierbein. This vierbein
represents a rest frame of the observer, who can relate the components of different
tensors in the event xμ(λ0) to this vierbein (Fig. 2.3).

Let us consider for instance a light signal with 4-momentum pμ , which reaches
the observer at the time x0(λ0). How are the frequency ν , which is measured
by the observer, and the unit vector nk, which denotes the direction of the pho-
ton, related to the 4-momentum? The observer decomposes pμ in the vierbein
elements:

pμ = hν(eμ(0) +nkeμ(k)) . (2.31)

From (2.30) we obtain

hν = gμν pμeν(0) , (2.32)

nk = −(hν)−1gμν pμeν(k) . (2.33)

It is true in principle that the components of tensors with respect to a vierbein are
related to directly measurable numbers. This is why they are sometimes called phys-
ical components of the tensor.

2.5 Stationary Space–Time

To begin with, we want to consider some particular, symmetric space–times and
study their physical properties. In this section we are going to treat the mathemat-
ical framework connected with symmetries without going into details; we simply
postulate a certain form of the metric, try to convince ourselves that it possesses a
symmetry, and then we pass directly over to the observable properties. Our aim is
to understand how to obtain, for instance, a ballistic curve in space out of a corre-
sponding autoparallel in space–time.
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In the definition of stationary space–time, we must distinguish between station-
ary and static fields. “Stationary” means “time independent”. Also a motion can
be stationary, e.g., a stationary circular motion of an electric current in a super-
conducting ring, or the rotation of the stars. “Static” means even more symmetry,
such that stationary motions are also excluded. For the definition of a stationary
situation, we can use the fact that all stationary motions reverse when time is re-
versed.

Definition 9 A space–time is called stationary if it admits a coordinate system {xμ}
with the following properties:

1. the x0 curves are time-like,
2. the components gμν of the metric are independent of the time coordinate x0

∂0gμν = 0 . (2.34)

It is called static if the components are, in addition, invariant with respect to time
reversal x0 →−x0.

The time reversal is considered here as a coordinate transformation:

x′0 = −x0, x′k = xk . (2.35)

The non-vanishing transformation coefficients for tensors are

∂x0

∂x′0
= −1,

∂xk

∂x′k
= 1 . (2.36)

The components of the metric with respect to {x′μ} hence satisfy

g′00 = g00, g′0k = −g0k, g′kl = gkl .

The invariance of the metric with respect to time reversal then means that

g0k(p) = 0 ∀p . (2.37)

Summarizing, we can write that there exist, in a stationary space–time, coordinates
(t,xk) such that the metric in these coordinates takes the form

ds2 = α2(dt +βkdxk)2 + ĝkldxkdxl , (2.38)

where

α =
√

g00(x1,x2,x3) ,

βk =
g0k(x1,x2,x3)
g00(x1,x2,x3)

,

ĝkl = gkl(x1,x2,x3)− g0k(x1,x2,x3)g0l(x1,x2,x3)
g00(x1,x2,x3)

.
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Here, the {xμ} are called stationary coordinates, and the observers along the x0

curves are called stationary observers. If the coordinates are chosen such that βk =
0, then the metric, the coordinates, and the observer are called static.

If we find coordinates such that a given metric admits the form (2.38) with βk �= 0,
this does not imply that there do not exist coordinates for which βk = 0. Let us study
this.

The stationary coordinates, it they exist, are only unique up to a certain trans-
formation. First, a general coordinate transformation of the spatial coordinates is
allowed

x′k = x′k(x1,x2,x3) . (2.39)

Thereby, α(x1,x2,x3) transforms as a scalar field, βk(x1,x2,x3) as a covector field,
and ĝkl(x1,x2,x3) as a tensor field of type (0,2). Furthermore, we can shift the time
coordinate in a way that depends on the space coordinates

t ′ = t +T (x1,x2,x3) , (2.40)

where T (x1,x2,x3) is an arbitrary function. Then the quantities transform as fol-
lows:

α ′ = α , β ′
k = βk −∂kT , ĝ′kl = ĝkl . (2.41)

We observe that βk changes in the same way as an electromagnetic vector potential
Ak does under a gauge transformation. The geometric meaning of transformation
(2.41) is an arbitrary shift T (x1,x2,x3) of all t = const hypersurfaces into the family
of t ′ = const hypersurfaces. Finally we can change the t-scale

t ′ = κt , (2.42)

where κ is a positive constant; then

α ′ = κ−1α , β ′
k = κβk , ĝ′kl = ĝkl . (2.43)

These three transformations and their combinations leave the form (2.38) invari-
ant, and there does not exist a more general transformation with the same property.
Strictly speaking, there are rare exceptions if space–time is time independent in
more than one direction, as is the case, for instance, for Minkowski space–time:
the Minkowski metric has the form (2.38); it is invariant with respect to all Lorentz
transformations, and these do not belong to the above class of transformations.

Equation (2.41) implies the following theorem.

Theorem 5 The metric (2.38) is static if and only if βk is the gradient of a function.

Then βk is either zero or it can be transformed away.
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2.5.1 The 3-Space

The stationary space–time is a special case that makes physically meaningful split-
ting of space–time in space and time possible. We imagine that spatial points are
defined by stationary observers: every observer sits in a fixed point of space and
has a well-defined, fixed distance from its neighbors. This means that these spatial
points are not points of a three-dimensional hypersurface anymore, as for instance
the simultaneity surfaces in Newton theory, but every spatial point is identified with
the orbit of a stationary observer. This orbit has three coordinates x1, x2, and x3, and
the distances between neighboring orbits, which are given by ĝkldxkdxl , are now
considered as distances between the spatial points. The coordinates x1, x2, and x3

cover a manifold Σ, and the 3-space is defined as the metric manifold (Σ, ĝkl).
The space Σ can be obtained from the space–time M by the projection π :

M �→ Σ, defined as follows: Let p ∈ M be a point with stationary coordinates(
t,x1,x2,x3

)
. Then π(p) ∈ Σ is determined by the coordinates

(
x1,x2,x3

)
.

2.5.2 Free Falls

The equation defining autoparallels arises in a stationary space–time from the
Lagrangian

L =
1
2
α2 (x1,x2,x3)

[
ṫ +βk

(
x1,x2,x3) ẋk

]2
+

1
2

ĝkl
(
x1,x2,x3) ẋkẋl .

The variation with respect to t yields

α2
(

ṫ +βkẋk
)

= e , (2.44)

where e is a constant. Another conservation law is

α2(ṫ +βkẋk)2 + ĝkl ẋ
kẋl = σ , (2.45)

where σ is the signature of the particle orbit, σ = 1 for massive test particles, and
σ = 0 for massless ones; this means that we parameterize massive particles with the
proper time but massless particles with an arbitrary parameter. Then follows:

ṫ +βkẋk =
1
α
√
σ − ĝkl ẋkẋl . (2.46)

The variation of the action with respect to xk leads, after a simple calculation, to

α2βm

(
ẗ +βkẍk

)
+ ĝmkẍk

−αα,m

(
ṫ +βkẋk

)2
+(α2βm),l ẋl(ṫ +βkẋk)−α2βl,mẋl

(
ṫ +βkẋk

)

+α2βmβk,l ẋ
kẋl +

1
2

(
ĝmk,l + ĝml,k − ĝkl,m

)
ẋkẋl = 0 . (2.47)
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Writing this formula we used a convenient and popular abbreviation: a comma for
the derivative. For instance,

α,m =
∂α
∂xm ,

or

gkl,m =
∂gkl

∂xm .

We want to reformulate (2.47) in such a way that no ẗ and ṫ are left. Thereto we
first have to differentiate (2.44) with respect to λ ,

α2
(

ẗ +βkẍk
)

+2αα,l ẋ
l
(

ṫ +βkẋk
)

+α2βk,l ẋ
kẋl = 0 ,

multiply this equation by βm and subtract it from (2.47). Then we insert for ṫ +βkẋk

the expression given in (2.46), and we thus obtain

ẍm + Γ̂m
kl ẋ

kẋl = ĝmk
√
σ − ĝrsẋrẋs

[α,k

α
√
σ − ĝrsẋrẋs +α(βl,k −βk,l)ẋl

]
, (2.48)

where

Γ̂k
rs =

1
2

gkl (∂rĝls +∂sĝlr −∂l ĝrs)

are the Christoffel symbols of the spatial metric.
Consequently the equation of autoparallels is split in a time (2.44) and three

spatial equations (2.48). We can then see which role every component of the met-
ric plays in the dynamics of test particles: the components gkl and g0k curve the
3-space; g00 and g0k bend the orbits so that they deviate from space geodesics. This
way we can also realize better what the four-component description of gravity in the
relativistic theory means and understand some of the phenomena that appear new
with respect to the Newton theory.

2.5.3 The Gravitoelectric and Gravitomagnetic Force

Let us now provide an interpretation for (2.48). Every curve xμ = xμ(λ ) in the
four-dimensional space–time M is mapped by the projection π on a curve xk =
xk(λ ) in the three-dimensional space (Σ, ĝkl). The left-hand side of (2.48) is the λ
acceleration of the projected curve. If the right-hand side vanished, (2.48) would
describe an autoparallel in (Σ, ĝkl). Otherwise the projection of the curve of a free-
falling particle in this space does not look like an autoparallel. For instance, for the
spatial metric ĝkl = −δkl , every autoparallel is a straight line. But an autoparallel
of the full space–time metric (2.38) leads in this case to a curved line, if projected
on the space: we “see” an acceleration, which is described by the right-hand side of
(2.38).

Let us study the acceleration for the massive case, i.e., λ = s and σ = 1. What is
the meaning of the square root? If we introduce the rest frame (uμ ,eμk ) of a stationary
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observer in the point p of its motion with the particle, we have uμ = (1/α,0,0,0)
and ẋμ is the (normalized) 4-velocity of the particle. The scalar product of these two
unit vectors is

gμνuμ ẋν = α(ṫ +βkẋk) .

Together with (2.46), this yields
√

1− ĝrsẋrẋs = gμνuμ ẋν . (2.49)

Let us introduce now new stationary coordinates x̃μ , which are adapted to the ob-
server: first we have x̃0 = α(p̄)t, where p̄ = π(p); secondly the hypersurface x̃0 =
const is orthogonal to the orbit of this observer (and of no other one); and finally
x̃k is such that the vectors satisfy ẽμk = δkμ . It is easy to show that such stationary
coordinates exist (exercise) but that they do not, in general, form geodetic systems
in p. In this system we have g̃μν(p) = ημν , ũμ = δ μ0 , and we obtain

gμν(p)uμ ẋν = g̃μν(p)ũμ ˙̃xν = ˙̃x0 . (2.50)

The particle’s velocity with respect to the observer’s rest frame is

(
dx̃0

dx̃0 ,
dx̃k

dx̃0

)
= (1, ṽk) ,

such that the relation between the two velocities is given by

( ˙̃x0, ˙̃xk) =
1√

1− ṽ2
(1, ṽk) . (2.51)

Equations (2.49), (2.50), and (2.51) yield

√
1− ĝrsẋrẋs =

1√
1− ṽ2

. (2.52)

In this way, we can write the right-hand side of (2.48) in the point p̄ and in the
adapted coordinates:

− δmk
√

1− ṽ2

[
(∂k ln α̃) ˙̃x0 +

(
∂̃kβ̃l − ∂̃l β̃k

)
˙̃xl
]

, (2.53)

since α̃(p̄) = 1. Also the left-hand side can be written in adapted coordinates (where
we simply would have to write everything with tildes).

The expression (2.53) describes the deviation of the spatial projection of the par-
ticle’s orbit from the autoparallels of the space and therefore constitutes an effective
force action on the particle. It reminds us of the expression for the Lorentz force
of a stationary field potential Aμ acting on a particle with charge q in the special
relativistic Maxwell theory:
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−qδmk
[
(∂kA0) ẋ0 +(∂kAl −∂lAk) ẋl

]
,

where the first term in the square brackets stands for the electric force and the second
for the magnetic one.

Correspondingly, the first term in expression (2.53) is called gravitoelectric if
it is multiplied by the mass μ . The second is called gravitomagnetic. The gravito-
magnetic effects of the Earth’s gravitational field are weak and are being measured
or observed (for a discussion, see [6]). The source of this gravitomagnetic field is
the angular momentum of the Earth in analogy to an electricity loop in electromag-
netism.

In the following we will restrict the discussion to static space–times and set βk =
0 as well as lnα =Φ. Then we have ĝkl = gkl ,

ds2 = e2Φdt2 +gkldxkdxl .

The sign in expression (2.53) implies that the gravitoelectric force points from points
with larger g00 to those with smaller g00. For the metric, which Newtonian physics
reproduces approximately, we obtain

ds2 = e2Φ (dx0)2 −δkldxkdxl . (2.54)

For instance, the only non-vanishing components of the curvature tensor for the
metric (2.54) are

R0
k0l = − ∂ 2Φ

∂xk∂xl −
∂Φ
∂xk

∂Φ
∂xl .

This is different from (1.27), which we found in Newton’s theory. The second term
on the right-hand side can be neglected with respect to the first one if Φ� 1, which
is valid near the Earth.

2.5.4 Redshift

Consider two static observers (xk
1) and (xk

2) with 4-velocity uμ1 and uμ2 . Let (xk
1) send

a photon to (xk
2). This leaves (xk

1) with the 4-momentum pμ1 , runs along the light-
like autoparallel and reaches (xk

2) with the 4-momentum pμ2 . The frequency ν1 of
the photon in the rest frame of (xk

1) and the frequency ν2 in the rest frame of (xk
2)

are given by (2.32) (Fig. 2.4).

hν1 = gμνuμ1 pν1 , hν2 = gμνuμ2 pν2 .

If we insert the corresponding values for gμν and uμ , we obtain

hνi =
√

g00 (xi)p0
i , i = 1,2 .
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Fig. 2.4 Redshift
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From this we would like to deduce the redshift

z =
λ2 −λ1

λ1
=
ν1 −ν2

ν2
.

The light-like orbit of the photon can be parameterized

xμ = xμ(κ) .

The functions xμ(κ) must satisfy (2.44) and (2.48) with βk = 0. Let κ be a physical
parameter:

pμ = ẋμ .

Because of (2.44) with βk = 0, we have

e = g00ẋ0 =
√

g00
(√

g00 p0)= h
√

g00ν ,

which yields, for the two frequencies,

√
g00

(
xk

1

)
ν1 =

√
g00(xk

2)ν2 ,

and for the redshift we obtain

z =

√
g00

(
xk

2

)
−
√

g00
(
xk

1

)

√
g00

(
xk

1

) . (2.55)

The redshift therefore depends, in the static space–times, only on the relation of
the metric’s g00 components in the corresponding points, and it is positive if the
signal climbs in the gravitational field (i.e., if it runs from points with small g00 to
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points with larger g00). We have actually nowhere used the fact that geodesics are
light-like. Equation (2.55) is therefore valid for massive particles, if we define

z =
ε1 − ε2

ε2
,

where ε is the particle’s (kinetic) energy with respect to the rest frame of the static
observer at the corresponding point, ε = gμνuμ pν . For a discussion of the experi-
mental aspects, see [6].

2.5.5 Gravitational Time Dilation

Equation (2.54) shows that Newton’s gravitational potential and the component g00

of the metric in static space–time are very closely connected. But this component is
also related to time measurement. It seems therefore that even the ideal clocks are
influenced by the gravitational field. In the following, we want to investigate this
phenomenon further.

We would like to compare two clocks: one at a static observer (xk
(1)) and the

other at (xk
(2)) (Fig. 2.5). The best way to do this is by using a light signal: the

observer (xk
(1)) sends light signals to (xk

(2)), with an interval of Δs(1) seconds, which

is determined by an ideal clock. The observer (xk
(2)) measures with his clock the

interval Δs(2) between two arriving signals. The nth signal runs along the light-like
geodesic xμ = yμn (λ ), which satisfies

yμn
(
λ(1)

)
=
(

x0
(1)n,x

k
(1)

)
, yμn

(
λ(2)

)
=
(

x0
(2)n,x

k
(2)

)
,

Fig. 2.5 Gravitational time
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where

x0
(1)n − x0

(1)(n−1) =
Δs(1)√

g00

(
xk
(1)

) .

Let us assume that the orbit of the first signal is known. The orbit of the second
can obviously be determined by the shift

y0
2(λ ) = y0

1(λ )+
Δs(1)√

g00

(
xk
(1)

) , yk
2(λ ) = yk

1(λ ) .

The shifted curve will indeed have the same values for ẏμ2 and ÿμ2 as the first one.
Also the coefficients of the geodesic equation (2.44) and (2.48) are independent of
y0

2(λ ), which is changed by the shift. Therefore the shifted curve yμ2 (λ ) solves the
equation with the correct initial and final values.

The values of the time coordinate x0 for the signal’s arrival at (xk
2) are then given

by x0
(2)n = y0

n(λ(2)), hence

x0
(2)n = x0

(2)1 +(n−1)
1

√
g00

(
xk
(1)

)Δs(1) ,

and the time difference is

Δs(2)

Δs(1)
=

√
g00

(
xk
(2)

)

√
g00

(
xk
(1)

) . (2.56)

This relation expresses the relative speed of the two clocks under consideration.
We see that the clock runs slower, where the component g00 is smaller, i.e., in the
direction of the gravitational acceleration. A discussion of the experiments can be
found in [6].

This effect can also provide an explanation for the redshift, which is based on the
wave theory of light. The light wave’s maxima propagate along light-like geodesics.
Hence we can use (2.56) also for the relation of the periods of the electromagnetic
oscillations. This leads again to (2.55).

The fact that the gravitational field influences the speed of clocks has great signif-
icance. As we shall see, also the trajectories of light rays are influenced by gravity.
The measurement of the proper time and the propagation of light determine the ge-
ometry of space–time according to the interpretations of special relativity theory. If
now gravity is present—and this is always the case—then we are led to contradic-
tions with the postulates of Minkowskian geometry. There are in principle two ways
out of this dilemma.
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1. We could keep Minkowskian geometry and could try to describe gravity as a
field of Minkowskian space–time. The effect of gravity on the propagation of
light and on the measurement of the proper time should then be explained by an
appropriate interaction between the clocks and the electromagnetic field on the
one hand and the gravitational field on the other hand. But then the geometry of
Minkowskian space–time is not determined by measurements as it is demanded
in special relativity theory. What else determines the geometry in this case? If
gravity is weak, it turns out that a Minkowskian auxiliary metric can be intro-
duced. This metric is however not unique (as a field on the manifold, compare
the discussion in Sect. 2.2), and it is not measurable; the causal structure, dis-
tances, and time intervals are anyhow determined by the gravitational field.

2. Light propagation and measurement of proper time determine the geometry of
the space–time, similarly as in special relativity theory. However, it is not a
Minkowskian geometry (this is the way chosen by general relativity).

Notice that the measurable properties of the space–time geometry include the
following structures:

1. the causal structure (which events influence which others),
2. the time intervals, and
3. the distances.

2.6 Isometry (A Mathematical Intermezzo)

In the previous section we dealt for the first time with symmetries of space–time. It is
worthwhile to study symmetry more generally and in more detail. For this purpose,
we first have to learn how objects such as tensors are transformed by a map. Let us
start with an example.

2.6.1 Rotation in EEE
2

Consider the Euclidean plane E
2 with Cartesian coordinates {x1,x2} and a rotation

φ of this plane by an angle α . A point p ∈ E
2 with coordinates xμ(p) transforms to

the point q = φ(p) with coordinates xμ(q), where

(x1(q),x2(q)) = (x1(p)cosα− x2(p)sinα,x1(p)sinα+ x2(p)cosα) , (2.57)

and

(x1(p),x2(p)) = (x1(q)cosα+ x2(q)sinα,−x1(q)sinα+ x2(q)cosα) . (2.58)

This equation describes a so-called active transformation; the points are moved but
the coordinates are not changed; a passive transformation is nothing but a coordinate
transformation where the points remain fixed and the coordinates are changed.
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Let now V μ be a vector in p given by its components with respect to {xμ}. How
do we transform V μ from p to φ(p) by φ? We have to make two steps.

(1) We rotate the coordinate system {xμ} and obtain in this way its so-called
φ -image {x′μ}:

x′1 = x1 cosα+ x2 sinα, x′2 = −x1 sinα+ x2 cosα, (2.59)

x1 = x′1 cosα− x′2 sinα, x2 = x′1 sinα+ x′2 cosα. (2.60)

Then we have
x′μ(q) = xμ(p) . (2.61)

(2) In the point φ(p) we define a vector Uμ by its components with respect to
{x′μ} determined by the equation

U ′μ = V μ . (2.62)

Therefore
Uμ = Xμν ′U

′ν = Xμν ′V
ν ,

so that, according to (2.60),
(
U1,U2)= (V 1 cosα−V 2 sinα,V 1 sinα+V 2 cosα) . (2.63)

We denote this vector Uμ at the point φ(p) by (φ�V )μ . This way the mapping of
tensors is defined by φ .

Let us consider a whole vector field V μ(x) on E
2. We say that V μ(x) is invariant

with respect to φ if, for every point p ∈ E
2 the vector (φ�V (p))μ equals the vector

V μ(φ(p)) at the point φ(p). If we define for example V μ(x) by the equations:

V 1(x1,x2) = x1, V 2(x1,x2) = x2 ,

we obtain, according to (2.63) and (2.57), that

((φ�V (p))1,(φ�V (p))2)
= (V 1(p)cosα−V 2(p)sinα,V 1(p)sinα+V 2(p)cosα)
= (x1(p)cosα− x2(p)sinα,x1(p)sinα+ x2(p)cosα) = (x1(q),x2(q))
= (V 1(q),V 2(q)).

Our vector field is therefore invariant.

2.6.2 Diffeomorphisms

We would like to extend these ideas to a broader class of maps, spaces, and objects.
Thereby it is advantageous to consider the coordinate systems as maps, as we al-
ready did on p. 8. A coordinate system {xμ} on an n-manifold M has a domain
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U , and there is a bijection h : U → R
n, which assigns to every point p ∈ U its

coordinates xμ(p). Given two such charts, (U ,h) with coordinates {xμ} and (V ,k)
with coordinates {yμ}, then the transformations yμ(x1, . . . ,xn) defined on U ∩V
are equal to the composed map k ◦h−1.

Definition 10 Let M and N be two n-manifolds, φ : M → N a bijection. φ is
called a diffeomorphism (in short diffeo), if the following conditions are satisfied for
every point p ∈ M :

(1) If (U ,h) is a chart around p and (V ,k) is a chart around φ(p), then the
functions k ◦φ ◦h−1 : R

n → R
n are differentiable (C∞).

(2) The matrix of the first derivatives of the functions k ◦ φ ◦ h−1 has a non-
vanishing determinant.

The manifolds M and N as well as (U ,h) and (V ,k) are allowed to coincide. The
right-hand side of (2.57) is an example of functions k ◦φ ◦h−1.

Let M and N be two n-manifolds, φ : M → N a diffeo. Moreover let p ∈ M
and (U ,h) be charts around p in M . Then (φ(U ),h◦φ−1) is a chart around φ(p)
in N . This follows immediately from the definition of diffeos, since the transfor-
mations between the charts (φ(U ),h ◦ φ−1) and (V ,k) (generalization of (2.59))
coincide with the functions k ◦φ ◦ h−1, and these satisfy all conditions for allowed
coordinates. We call the chart (φ(U ),h ◦ φ−1) the φ -image of (U ,h). If {xμ} are
the coordinates for the charts (U ,h) and if {x′μ} are the ones for (φ(U ),h◦φ−1),
then (2.61) holds again.

Definition 11 Let M and N be two n-manifolds, φ : M → N a diffeo. Let O be
an object at the point p ∈M , which is represented by a well-defined index-carrying
quantity (see Sect. 1.5.3) with respect to an arbitrary chart around p. Let (U ,h) be a
chart around p. Then the object φ�O is defined by the following condition: the repre-
sentation of φ�O with respect to (φ(U ),h◦φ−1) coincides with the representation
of O with respect to (U ,h).

The condition that the object possesses well-defined components with respect to
arbitrary coordinates is non-trivial. Although all objects that we have encountered
so far (tensors and affine connections) satisfy this condition, there are objects that
do not (namely spinors). Finally we come to the definition of a symmetry.

Definition 12 Let M be an n-manifold and φ : M → M a diffeo. Furthermore let
O(x) be a field of the object O on M . We say that the field O(x) is invariant with
respect to φ if

(φ�O)(x) = O(x) . (2.64)

2.6.3 Lie Derivative

Let us study infinitesimal diffeos in more detail. Such a transformation can be de-
noted by dφ . Let us choose a point p∈M and let q = dφ(p). We choose furthermore
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a fixed chart (U,h) around p; let {xμ} be the corresponding coordinates, and let the
functions h◦dφ ◦h−1 be of the form

xμ(q) = xμ(p)+ξ μ(p)dε . (2.65)

The term ξ μ(p)dε represents the differences of the coordinates corresponding to
the (arbitrary) point p and its dφ -image; since dφ is infinitesimal, these differences
form a vector at each point, and therefore ξ μ(x) is a vector field on M . Conversely
we can relate to every smooth vector field on M an infinitesimal diffeomorphism
according to (2.65). The inverse map (2.65) is

xμ(p) = xμ(q)−ξ μ(q)dε . (2.66)

In (2.65) and (2.66) it is not important, in which point, p or q, the vector field ξ μ
is taken, since the difference is again of the order of dε; we calculate everything up
to linear contributions in dε . We denote the dφ -image of {xμ} by {x′μ}. From the
definition, it follows that

x′μ(q) = xμ(p) .

In order to determine the transformation between the coordinate systems, we must
compare the two coordinate systems in a given point. The relation (2.66) yields that
the transformation rule and its inverse admit the form

x′μ = xμ −ξ μ(x)dε, xμ = x′μ +ξ μ(x′)dε . (2.67)

Taking derivatives of (2.67), we obtain

∂x′μ

∂xν
(p) = δ μν −ξ μ,ν(p)dε,

∂xμ

∂x′ν
(p) = δ μν +ξ μ,ν(p)dε, (2.68)

∂ 2x′ρ

∂xμ∂xν
(p) = −ξρ,μν(p)dε, (2.69)

where it is again unimportant whether we take the primed or unprimed components
of the derivatives ξ μ,ν and ξ μ,μν , and whether we take their values at the point p or q.

By means of (2.65), (2.66), (2.68), and (2.69), we can calculate the dφ -image of
various fields. Let, for instance, χ(x) be a scalar field on M and ψ(x) its dφ -image.
From the definition, it follows that

ψ(q) = χ(p) .

We want to compare the fields at a given point. Let us therefore determine the value
of χ at the point q using (2.66):

ψ(q) = χ(q)−χ,μ(q)ξ μ(q)dε . (2.70)

Consider now a vector field Uμ(x); its dφ -image V μ(x) satisfies by definition the
equation

V ′μ(q) = Uμ(p),
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where this time we have to write the components of the two fields in different
coordinates. Let us transform everything in the coordinate system {xμ} and at the
point q.

V μ(q) = Xμρ ′V
′ρ(q) = Xμρ ′U

ρ(p)

= (δ μρ +ξ μ,ρ(q)dε)(Uρ(q)−Uρ
,σ (q)ξσ (q)dε)

= Uμ(q)− (Uμ
,ρ(q)ξρ(q)−Uρ(q)ξ μ,ρ(q))dε.

The arguments do not have to be written out explicitly, since they coincide:

V μ = Uμ − (Uμ
,ρξρ −Uρξ μ,ρ)dε. (2.71)

Since affine connections have well-defined components with respect to coordinate
systems, we can undertake an analogue calculation for those too. Let Γμρσ (x) be an
affine connection and Δμρσ (x) its dφ�-image. By definition the following must hold:

Δ′μρσ (q) = Γμρσ (p).

In this case, the transformation to a particular point and coordinate system starts as
follows:

Δμρσ (q) = Xμα ′X
β ′
ρ X γ

′
σ Δ′αβγ(q)+Xμα ′X

α ′
ρσ

= Xμα ′X
β ′
ρ X γ

′
σ Γαβγ(p)+Xμα ′X

α ′
ρσ .

We continue analogously to the previous procedure and obtain

Δμρσ = Γμρσ −
(
Γμρσ ,τξ τ −Γτρσξ

μ
,τ +Γμτσξ τ,ρ +Γμρτξ τ,σ +ξ μ,ρσ

)
dε. (2.72)

We still need an equation for the covariant tensor fields of second rank (type (0,2)).
It is given by the following:

Tμν = Sμν −
(
Sμν ,ρξρ +Sρνξ

ρ
,μ +Sμρξ

ρ
,ν
)

dε. (2.73)

The difference between a field Φ and its φ�-image Ψ defines the so-called Lie
derivative. More precisely, the Lie derivative LξΦ of the field Φ with respect to the
vector field ξ is defined by

Φ(x)−Ψ(x) = (LξΦ)(x)dε. (2.74)

Equations (2.70) (2.71), (2.72), and (2.73) lead for instance to the following:

Lξ χ = χ,ρξρ , (2.75)

LξU
μ = Uμ

,ρξρ −Uρξ μ,ρ (2.76)
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LξΓ
μ
ρσ = Γμρσ ,τξ τ −Γτρσξ

μ
,τ +Γμτσξ τ,ρ +Γμρτξ τ,σ +ξ μ,ρσ , (2.77)

LξSμν = Sμν ,ρξρ +Sρνξ
ρ
,μ +Sμρξ

ρ
,ν . (2.78)

From the definition of the Lie derivative, it follows that the Lie derivative of a tensor
field of type (p,q) is again a tensor field of type (p,q) because its value at a point is
the difference of two tensors at this point.

2.6.4 Killing Vector Field

In the section about the static space–times, we have learned about a special case of
the metric, which was independent of one of the coordinates. We were able to derive
two useful conclusions from this:

1. a first integral of the geodesic equations,
2. shifting this coordinate by a constant value, the metric properties are conserved

(the shift of a geodesic is again a geodesic).

We would like to formulate the idea of symmetry in a covariant way. Let (M ,g)
be a space–time; let us assume that there are coordinates {x̄μ} such that the compo-
nents ḡμν of the metric do not depend on one of the coordinates, x̄κ :

∂̄κ ḡρσ (x̄) = 0 ∀ρ,σ , x̄, (2.79)

where κ is fixed. The metric is then symmetric with respect to the one-dimensional
group of transformations

x̄μ −→ x̄μ , μ �= κ
x̄κ −→ x̄κ + t.

Each transformation of such a group is called isometry. (It is not difficult to show
that this is a symmetry group in the sense of the previous part of this section.)

Let us define a vector field ξ μ by the equation

ξ̄ μ = δ μκ ;

i.e., the components of ξ with respect to {x̄μ} are given by the above equation: this
defines a vector at every point. Then we have

∂̄κ ḡρσ (x̄) = ξ̄ μ ∂̄μ ḡρσ (x̄).

The corresponding transformation is generated by the vector field ξ̄ μ . The coordi-
nates {x̄μ} are said to be adapted to the symmetry.

We now want to express the property (2.79) of the vector field ξ in general coor-
dinates {xμ}. We obtain the following:
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ξν = δ μκ Xνμ̄ = Xνκ̄ ,

and

∂κ̄ ḡρσ = ∂κ̄
(

Xαρ̄ Xβσ̄ gαβ
)

= Xαρ̄ Xβσ̄ Xνκ̄ gαβ ,ν +Xαρ̄κ̄Xβσ̄ gαβ +Xαρ̄ Xβσ̄ κ̄gαβ

= Xαρ̄ Xβσ̄ Xνκ̄ gαβ ,ν +X γρ̄κ̄Xβσ̄ gγβ +Xαρ̄ X γσ̄ κ̄gαγ

= Xαρ̄ Xβσ̄

(
Xνκ̄ gαβ ,ν +X λ̄α X γκ̄λ̄gγβ +X λ̄β X γκ̄λ̄gαγ

)

= Xαρ̄ Xβσ̄

(
gαβ ,νξ ν +gγβ ξ

γ
,α +gαγξ

γ
,β

)
.

From the above, it follows that (2.79) is equivalent to

gαβ ,νξ ν +gνβ ξ ν,α +gανξ ν,β = 0. (2.80)

This equation is called Killing equation, and the vector field ξ μ is called the Killing
vector field. (Comparing with (2.78), we see that (2.80) is equivalent to Lξg = 0.)

Isometries imply conservation laws of the dynamics. The importance of the
Killing vector fields lies for us in their property to provide integrals of the geodesic
equations.

Theorem 6 Let ξ μ(x) be a Killing vector field. Then the quantity

Pξ := gμνξ μ ẋν

is conserved along an autoparallel.

Proof Let us choose an autoparallel and describe it by the functions xμ(λ ). These
functions must obey the Euler–Lagrange equation

d
dλ

(
gρν ẋν

)
=

1
2

gμν ,ρ ẋμ ẋν ,

which corresponds to the Lagrangian 1
2 gμν ẋμ ẋν . Let us calculate the λ derivative

of Pξ :

d
dλ

(
gμνξ μ ẋν

)
= gμνξ μ,ρ ẋν ẋρ +

d
dλ

(
gμν ẋν

)
ξ μ

=
1
2

(
gρνξ

ρ
,μ +gμρξ

ρ
,ν
)

ẋμ ẋν +
d

dλ
(
gρν ẋν

)
ξρ .

If we insert for the last term from the Euler–Lagrange equation, we obtain

d
dλ

(
gμνξ μ ẋν

)
=

1
2

(
gρνξ

ρ
,μ +gμρξ

ρ
,ν +gμν ,ρξρ

)
ẋμ ẋν .

The expression in brackets vanishes if ξ μ is a Killing field and therefore the deriva-
tive vanishes, qed.
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For static space–times in adapted coordinates, it holds that

gμνξ μ ẋν = g0ν ẋν .

We used the fact that this quantity is constant in order to calculate the redshift.

2.7 Rotationally Symmetric Space–Times

We can intuitively understand how the metric of a rotationally symmetric space–
time looks like if we study the metric on two-dimensional rotational surfaces.

2.7.1 Rotation Surfaces

Let E
3 be the three-dimensional Euclidean space and x,y, and z the orthogonal co-

ordinates in E
3. Let the profile curve of a rotation surface F with axis x = 0, y = 0

be given by the equation z = z(r), where r is the distance to the axis. Furthermore,
let ϑ be the angle of the rotation with value zero at the xz-plane. We choose the
functions r and ϑ as coordinates on F . The coordinates x,y, and z of a point r, ϑ at
the surface are given by:

x = r cosϑ , y = r sinϑ , z = z(r). (2.81)

The metric, which is induced on F by E
3, can be determined by calculating the

differentials dx, dy, and dz of the E
3 metric from relation (2.81):

ds2 = dx2 +dy2 +dz2

= (cosϑ dr− r sinϑ dϑ)2 +(sinϑ dr + r cosϑ dϑ)2 +(z′ dr)2

=
[
1+ z′2(r)

]
dr2 + r2dϑ 2.

The metric therefore has the following form

ds2 = A(r)dr2 + r2dϑ 2, (2.82)

where A(r) = 1+ z′2(r).
The rotations around the z-axis form a group, which transforms every point of

the plane F into another point in F . If we let the whole group act on a fixed point
p in F , we obtain a set of points in the plane F , of which each one is the image of
p with respect to a group element. We denote this set by O(p) and call it the orbit
of the group through p. In our case, the orbits are circles r = const. The function r is
constant along the orbits. It is hence an invariant of the group. The function ϑ plays
the role of a coordinate along the orbits.
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The meaning of the elements of the metric in (2.82) can be described as follows.
The element r2dϑ 2 measures the quantity L(p), the length of the orbit. Indeed,

L(p) =
∫

dϑ
√

gϑϑ .

The element A(r)dr2 measures the distance between the orbit with the value r and
the one with the value r + dr. We observe that there are no elements of the form
grϑdr dϑ . This means geometrically: ϑ could be chosen along different orbits such
that the curves ϑ = const are orthogonal to the orbits.

What is the geometric meaning of the invariant r? In the embedding space E
3,

r(p) is for instance the distance of the point p to the z-axis. In order to measure this
distance, we must leave the plane F . Does r also have a meaning inside the plane
F ? Here it does not in general describe a distance from the center: F does not even
have to possess a center. But the length L(p) of the orbit O(p) is 2πr(p). L(p) can
in principle be measured without leaving the plane F . This length provides then the
geometric meaning of r.

2.7.2 Space–Times

A simple example of a rotationally symmetric space–time is the Minkowski space–
time. If we introduce the spherical coordinates t,r,ϑ ,ϕ , we obtain the Minkowski
metric written in the following form:

ds2 = dt2 −dr2 − r2 (dϑ 2 + sin2ϑ dϕ2) .

The orbits are now 2-surfaces r = const, t = const, the functions r and t are invariants
of the rotation group. The term r2(dϑ 2 + sin2ϑ dr2) in the metric is the metric
within the orbit and dt2 − dr2 measures the distances between the orbits (t,r) and
(t + dt,r + dr). In addition we were able to choose the coordinates ϑ and ϕ along
the different orbits such that the surfaces ϑ = const, ϕ = const are orthogonal to
the orbits. This also implies that the components gtϑ , gtϕ , grϑ , and grϕ vanish. The
function r is again related to the size of the orbits: the area of an orbit at point p is
4πr2.

Now we are intuitively prepared to make the following definition:

Definition 13 The space–time (M ,g) is rotationally symmetric if there exist coor-
dinates t,r,ϑ , and ϕ , in which the metric has the following form:

ds2 = g00dt2 +2g01dt dr +g11dr2 − r2 (dϑ 2 + sin2ϑ dϕ2) , (2.83)

where the components g00, g01, and g11 are independent of ϑ and ϕ .

The 2-surface t = const, r = const are orbits of the rotation group. The metric de-
composes in two parts: one measures the distances along the orbits and the other
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the distances between the orbits, and the orbital coordinates can be chosen in such a
way that there are no mixing terms. The function r is related to the area F(r) of the
orbit at the point r: F(r) = 4πr2(p). Moreover, a space–time does not necessarily
possess a center (e.g., black holes).

The metric (2.83) does not change its form if the coordinates ϑ and ϕ are “ro-
tated”. Such a rotation is given by the following transformation. Let us consider an
imaginary unit sphere around the origin of the E

3 space. The Cartesian axes are x,
y, and z, and the corresponding spherical coordinates are denoted by ϑ and ϕ (i.e.,
ϑ is the angle between the position vector and the z-axes, etc.). The metric on the
sphere’s surface is given by

ds2 = dϑ 2 + sin2ϑ dϕ2. (2.84)

Let x′, y′, and z′ be new, arbitrary Cartesian axes; these can be obtained from the
old ones by a rotation O (O is an orthogonal matrix). Let, furthermore, ϑ ′ and ϕ ′

be the corresponding new spherical coordinates. The rotation leads to a coordinate
transformation

ϑ ′ = ϑ ′
O(ϑ ,ϕ), ϕ ′ = ϕ ′

O(ϑ ,ϕ), (2.85)

which is complicated, but well defined by the rotation. We can now use the trans-
formation (2.85) in the curved space–time (2.83) together with t ′ = t and r′ = r!
It is obvious that the metric has again, in the new spherical coordinates, the form
(2.84), and that this is also the case if we insert the transformation rules (2.85) in
(2.84). The infinitesimal generators of the rotation around the three coordinate axes
are the three vector fields ξ μx , ξ μy , and ξ μz on E

3, which satisfy, for instance, r �→ r,
ϑ �→ ϑ +ξϑx dλ , and ϕ �→ ϕ+ξϕx dλ .

By inserting in the Killing equation, we easily verify that the three vectors

ξx = (0,0,−sinϕ,−cotϑ cosϕ), (2.86)

ξy = (0,0,cosϕ,−cotϑ sinϕ), (2.87)

ξz = (0,0,0,1) (2.88)

are Killing vectors of the metric (2.83) (exercise). Note in particular that the Killing
fields are independent of the choice of the components g00, g01, and g11 in the space–
times (2.82); they have the same form for flat and curved space–times. It is possible
to show that there do not exist coordinates that are adapted to all above three Killing
fields simultaneously.

The previous consideration helps us to show an important property common to
all geodesics (time-, light- and space-like) in a space–time with the metric (2.82):

Theorem 7 For every geodesic t(λ ), r(λ ), ϑ(λ ), and ϕ(λ ) in a rotationally sym-
metric space–time, there exists a rotation (2.85), such that the geodesic satisfies

ϑ ′(λ ) = π/2 ∀ λ . (2.89)

Proof The three Killing fields (2.86), (2.87), and (2.88) lead to the first integrals
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jx = −gμνξ μx ẋν , jy = −gμνξ μy ẋν , jz = −gμνξ μz ẋν .

Substituting for the metric yields

jx = −r2(λ )sinϕ(λ ) ϑ̇(λ )− r2(λ )sinϑ(λ )cosϑ(λ )cosϕ(λ ) ϕ̇(λ ),

jy = r2(λ )cosϕ(λ ) ϑ̇(λ )− r2(λ )sinϑ(λ )cosϑ(λ )sinϕ(λ ) ϕ̇(λ ),

jz = r2(λ )sin2ϑ(λ ) ϕ̇(λ ),

where jx, jy, and jz is a constant three-number. We have

jx sinϑ(λ )cosϕ(λ )+ jy sinϑ(λ )sinϕ(λ )+ jz cosϑ(λ ) = 0,

as substitution shows. This can be interpreted as follows: the functions ϑ(λ ) and
ϕ(λ ) describe a curve on an auxiliary surface of a sphere of radius 1 and center
(0,0,0) in E

3. The position vector

(sinϑ(λ )cosϕ(λ ),sinϑ(λ )sinϕ(λ ),cosϑ(λ ))

of each point on the curve must, because of the above equation, lie in the surface,
which stands orthogonal to the vector ( jx, jy, jz) and passes through the origin. The
motion takes place on a circle. We can now rotate the Cartesian axes in such a way
that the z′-axis is parallel to the vector ( jx, jy, jz); then the new coordinate ϑ ′ along
the circle has the value (2.89), qed.

Let, hence, ϑ and ϕ be the new coordinates, which are found in this way for an
autoparallel. Then we obtain for the integrals jx = jy = 0 and jz = r2(λ )ϕ̇(λ ). Our
first three integrals are thus transformed to

ϑ(λ ) = π/2 , r2(λ )ϕ̇(λ ) = j ; (2.90)

there is now a single constant parameter left, j.

2.7.3 Geodesic Equation in the Static Case

We would now like to show how the integration of the geodesic equation in the case
of a static and rotationally symmetric space–time reduces, because of the existence
of Killing fields, to quadratures.

The metric of a static as well as rotationally symmetric space–time can be trans-
formed, according to what was already said about these two cases, to the following
form:

ds2 = B(r)dt2 −A(r)dr2 − r2 (dϑ 2 + sin2ϑ dϕ2) . (2.91)

The metric admits four Killing fields: the three given in (2.86) (2.87), and (2.88),
and
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ξt = (1,0,0,0).

We call the fourth integral of motion e:

e = gμνξ
μ
t ẋν .

Substitution for the metric yields
e = Bṫ. (2.92)

There is another conserved quantity, (2.21), or

Bṫ2 −Aṙ2 − r2(ϑ̇ 2 + sin2ϑϕ̇2) = μ2. (2.93)

Let us now consider a fixed geodesic and let us choose spherical coordinates such
that (2.90) holds. Then we get from (2.93)

Bṫ2 −Aṙ2 − r2ϕ̇2 = μ2. (2.94)

The three equations (2.90), (2.92), and (2.94) can be solved for ṫ, ṙ, and φ̇ with the
result

ṙ = ±
√

e2

A(r)B(r)
− j2

r2A(r)
− μ2

A(r)
, (2.95)

ṫ =
e

B(r)
, (2.96)

ϕ̇ =
j

r2 . (2.97)

These are the promised quadratures.

2.8 Asymptotically Flat Space–Times

In this section we study the gravitational field of a static, rotationally symmetric,
isolated object. Isolated means that the object is alone in the universe and that its
field decreases if we move away from it. In the Cartan–Friedrich theory, we have

Rμνρσ ∼ ∂ 2Φ
∂ r2 ∼ 1

r3 → 0.

In general relativity, we want to demand, similarly, that the space–time at large
distances from the center of the source be practically flat. Let us now formulate this
condition more precisely. We will see that the metric on surfaces of normal bodies
is already very similar to a flat metric. The reason is that such bodies are in a certain
sense strongly diluted objects.
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2.8.1 Eddington–Robertson Expansion

First we should determine what is meant by “large distances”. Is this a kilome-
ter, a light year, or a million light years? This will depend on the size of the
source. Each source should be associated with a length, which takes into account
its strength. Such a length we know already: it is the gravitational radius RG. Let
us therefore try to define the distance of a point with radial coordinate r from
the source as large if r � RG. The region where r � RG is called the asymp-
totic region. In the asymptotic region, the relation (RG/r) is consequently a small
parameter.

Where is the asymptotic region for concrete systems? The Newton constant has
in our units (c = 1) the dimension meter/kilogram and the value ≈ 10−27. We then
have for instance:

Sun RG = 1.477×103 m R = 6.960×108 m
Earth RG = 4.437×10−3 m R = 6.371×106 m.

All points above the surface of these two celestial bodies lie already deep inside the
asymptotic region.

We assume that the functions A(r) and B(r) in the metric (2.91) are analytical
functions of (RG/r) in the asymptotic region. Hence, we can expand them in a series:

A(r) = a0 +a1(RG/r)+a2(RG/r)2 + . . .

B(r) = b0 +b1(RG/r)+b2(RG/r)2 + . . . .

We demand that the metric in the limit r → ∞ becomes the Minkowski metric. This
condition determines a0 and b0:

a0 = b0 = 1.

We demand furthermore that the metric correctly reproduces Newtonian physics,
at least up to first order in the small parameter RG/r. The comparison with (2.54)
shows that for this to hold, it is sufficient to have A(r) = 1 and B(r) = exp2Φ,
where Φ is the Newton potential. For a static rotationally symmetric source of
mass M, we have however (if we reintroduced c, we would then have to write
B(r) = c2 exp(2Φ/c2)):

Φ= −GM
r

= −(RG/r).

Up to first order, this means that

B(r) = 1−2(RG/r),

hence b1 = −2. We will see that the terms with a1 and b2 are small corrections to
Newton’s theory and that the terms of higher order are not measurable in the solar
system with current instruments. We obtain the following expansion:
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A(r) = 1+2γ(RG/r)+ . . . (2.98)

B(r) = 1−2α(RG/r)+2(β −αγ)(RG/r)2 + . . . (2.99)

where α , β , and γ are constants. Equations (2.98) and (2.99) are called Eddington–
Robertson expansion [7, 8]. If it should reproduce in first-order Newton’s theory,
then α must be equal to 1. The form, in which the constants β and γ appear, has
mainly historical reasons. Their physical and geometric meaning can be read off
from their position in the metric. The constant γ is related to the curvature of the
space; the spatial part of the metric,

ds2 = (1+2γRGr−1)dr2 + r2(dϑ 2 + sin2ϑ dϕ2),

is flat if γ = 0; if γ < 0, then the distance between the orbits r and r +dr is smaller
than dr; if γ > 0, this distance is larger than dr. The constant β represents the cor-
rections of higher order to the Newton potential. Later we will describe methods of
how these constants can be measured.

2.8.2 Energy and Momentum Balance

For our purposes, we can regard the expansion (2.98) and (2.99) as a definition for
asymptotically flat space–times (a much more general definition is possible, [9]).
Asymptotically flat space–times form an important class of models, for which many
of the usual physical notions, such as for instance the gravitational waves and their
energy, energy and momentum balance, interpretation of conservation laws, and
many more, make good sense.

In general the issue of energy and momentum balance in general relativity is
very different from what we are used to in Newton’s or special relativity physics.
A difficulty arises from the fact that energy and momentum are components of a
4-vector, i.e., a tensor, and that in general tensors cannot be compared at different
points. But making the balance, we have to compare them at the beginning and at
the end of the investigated process, and the beginning differs from the end at least
in the time; they are given by different points in space–time.

Consider a particle that starts at a point, let’s say p, is influenced by a field, and
arrives at another point q of the space–time. Did it gain or loose energy? In flat
space–time, this question always has a meaningful answer. It is possible to compare
the 0-components of the particle’s 4-momenta with respect to the same inertial frame
at the two points. Indeed, the difference of these two 4-vectors is again a 4-vector
and has an invariant meaning. We can make the comparison also without using an
inertial frame: we place a vierbein in p and transport this vierbein parallelly to q.
Then we decompose the two 4-momenta with respect to these two vierbeins and
compare the components. In a curved space–time, we have the problem that no
unique parallel transport exists—it depends on the connecting curve between p and
q. We might also argue that by the experiment itself, exactly one connecting curve
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between p and q is chosen and uniquely determined, namely the orbit of the particle
itself. Why shouldn’t we use this to transport the vierbein from p to q? In this case,
we would find out that in this way, we will never achieve an increase or decrease of
energy or momentum in a gravitational field—the particle’s 4-momentum as well as
the vierbein are transported parallelly along the orbit, so that the components of the
4-momentum remain constant with respect to the vierbein. The definition would be
formally correct but trivial.

Nonetheless, there are sometimes conditions that make the energy balance mean-
ingful and non-trivial. Assume that the curvature is concentrated in a finite (com-
pact) region G of space in a static space–time and that this space–time is flat outside
this region. Let us consider a particle that starts outside of G , flies through G , and
is recaptured again outside of G . A vierbein can now be transported parallelly from
p to q along a curve that runs outside of G . Then the vierbein in q is determined
uniquely by one given in p, and the balance is therefore well defined. It is this kind
of balance, which is of physical interest.

Asymptotically flat space–times can be considered as a limit of the above-
mentioned special conditions. Indeed, we can for instance make the following coor-
dinate transformations in (2.91):

x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ . (2.100)

(In spite of the fact that these equations are very similar to transformations from
curved spherical coordinates to “rectilinear” Cartesian coordinates, the new coordi-
nates t,x,y, and z are curvilinear again!) We then have

r =
√

x2 + y2 + z2, (2.101)

such that

dr =
x dx+ y dy+ z dz

r
,

and we obtain that

ds2 = dt2 −dx2 −dy2 −dz2

+ (B−1)dt2 − (A−1)
(

x dx+ y dy+ z dz
r

)2

. (2.102)

If (2.98) and (2.99) hold, all terms in the second line of (2.102) vanish in the limit
r → ∞, and the metric will have the form of the Minkowski metric in an inertial
frame. If the particle then starts at r =∞ and ends at r =∞, we can draw the balance
for energy and momentum by comparing the components of the 4-momentum at the
beginning and at the end with respect to the coordinates t,x,y, and z.

Are the coordinates t,x,y, and z in asymptotic regions uniquely determined?
First, the components of the metric do not depend on t, i.e., the source does not
move relative to this coordinate, and we have an analogy to the rest frame of a
central body in general relativity, such as we know it from special relativity. This
way the boosts are excluded, and the coordinate t is determined up to translations
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t → t +Δt. Second, the function r, defined by (2.101), is constant along the orbits
of the group of rotations. This excludes spatial translations. Since everything is ro-
tationally symmetric, the source’s center of mass in an analogue situation in special
relativity would lie at r = 0, and this way we are dealing with a general-relativity
analogy of a mass-centered reference frame. Only the spatial rotations are left. A
coordinate system of this kind is called asymptotic reference frame.

Let us consider an autoparallel, which is given by the functions t(λ ),r(λ ),ϑ(λ ),
and ϕ(λ ) and satisfies

lim
λ→∞

r(λ ) = ∞ lim
λ→−∞

r(λ ) = ∞. (2.103)

If λ is a physical parameter, then ṫ(λ ), ṙ(λ ), ϑ̇(λ ), and ϕ̇(λ ) are the components of
the particle’s 4-momentum. We can define the following:

Definition 14 For a test particle that satisfies condition (2.103), the asymptotic 4-
momentum pμ− at the beginning and pμ+ at the end is defined by

pμ± = lim
λ→±∞

(ṫ(λ ), ẋ(λ ), ẏ(λ ), ż(λ )) , (2.104)

and the asymptotic angular momentum by

jk
± = lim

λ→±∞
[y(λ )ż(λ )− ẏ(λ )z(λ ),

z(λ )ẋ(λ )− ż(λ )x(λ ),x(λ )ẏ(λ )− ẋ(λ )y(λ )] , (2.105)

where the coordinates are understood as those of the asymptotic reference frame.

In order to simplify things, we will rotate the asymptotic reference frame so that

ϑ(λ ) =
1
2
π

and the transformation rules (2.100) become

x(λ ) = r(λ )cosϕ(λ ), y(λ ) = r(λ )sinϕ(λ ), z(λ ) = 0. (2.106)

The components of the tangent vector ẋμ to the autoparallel are given with respect
to the asymptotic reference frame by

ṫ(λ ),
ẋ(λ ) = ṙ(λ )cosϕ(λ )− r(λ )sinϕ(λ )ϕ̇(λ ), (2.107)

ẏ(λ ) = ṙ(λ )sinϕ(λ )+ r(λ )cosϕ(λ )ϕ̇(λ ), (2.108)

ż(λ ) = 0.

According to Definition 14, we know that p0
− := ṫ(−∞) is the particle’s en-

ergy measured at the beginning in the asymptotic reference frame. Similarly, jz
− :=

x(−∞)ẏ(−∞) − y(−∞)ẋ(−∞) is the z-component of the particle’s angular
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momentum with respect to the rotated asymptotic reference frame, and therefore
the whole angular momentum.

We can draw the energy and momentum balance in our static and rotationally
symmetric space–time without explicitly solving the autoparallel equation. From
the conservation law (2.96), we obtain that

e = B(∞)ṫ(−∞) = ṫ(−∞)

and
e = B(∞)ṫ(∞) = ṫ(∞).

This first implies that e = p0
+ = p0

−, hence the asymptotic energy is conserved. Sec-
ond, we see that the first integral e has the meaning of the energy with respect to the
asymptotic reference frame (asymptotic energy). Energy conservation follows here
from the symmetry of the field with respect to time translations (static space–time).

The situation is similar for the angular momentum: (2.106), (2.107), and (2.108)
yield

x(λ )ẏ(λ )− y(λ )ẋ(λ ) = r2(λ )ϕ̇(λ ) = j.

The angular momentum is therefore conserved: j = jz
+ = jz

− (which follows from
the rotation symmetry), and j is nothing but the angular momentum with respect to
the asymptotic reference frame.

This way we can draw the energy and momentum balance in the asymptotically
flat space–times. The Eddington–Robertson expansion enables us moreover to insert
concrete functions of r for A(r) and B(r).

2.9 Motion of Planets

Our next task is to determine the metric in a region around the Sun by measurements
and observations. The Sun can be considered in a very good approximation as static
and rotationally symmetric. The field around the Sun is described by a line element
(2.91). Moreover, the space–time outside the Sun is an asymptotic region and we
can use (2.98) and (2.99). The field of the planets does not disturb the static and
rotationally symmetric picture much. For most purposes, this disturbance can be
neglected. The planets themselves can be considered as mass points. Then their
motion is described by (2.95), (2.96), and (2.97).

It is useful to eliminate the parameter λ from these equations. We divide (2.96)
and (2.97) by (2.95) and obtain

dt = ± e
μ

√
A

B
dr

√
e2μ−2B−1 − j2μ−2r−2 −1

, (2.109)

dϕ = ± j
μ

√
A

r2

dr
√

e2μ−2B−1 − j2μ−2r−2 −1
. (2.110)
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2.9.1 Comparison with Newton’s Theory

The fully relativistic equations (2.109) and (2.110) should now be applied to the
special case of small velocities v � 1 and weak gravitational fields (RG/r) � 1.
In this case, Newton’s theory will be a good approximation. The gravitational field
must also be weak in order to assure that the gravitational acceleration does not
produce velocities that are too high. From observations, it follows that v and (RG/r)
are not independent: the kinetic and potential energies of the planets are comparable:

μv2 ≈ μ(RG/r).

(This also follows from Newtonian mechanics—being known as the virial theorem
[2], but we don’t want to motivate the above relation with Newtonian mechanics
since our aim is to first derive it in the following.) If we denote the small parameter
by δ and if we set

v ≈ δ ,

then we have
RG/r ≈ δ 2.

Let us expand the right-hand side of (2.109) and (2.110) in powers of δ by using
relations (2.98) and (2.99). First we note that e is the total relativistic energy of
the planet with respect to infinity, and, in the non-relativistic approximation, the
following holds

e ≈ μ+ ε,

where

ε =
1
2
μv2

is the kinetic energy. Furthermore we have

j ≈ μr2ϕ̇ ≈ μrv ≈ μrδ ,

where the dot denotes the derivative with respect to time. The expression under the
square root in (2.109) and (2.110) can be transformed as follows:

e2μ−2B−1 − j2μ−2r−2 −1 ≈
(

1+
2ε
μ

)
(1+2α(RG/r))− j2μ−2r−2 −1

≈ 2εμ−1 +2α(RG/r)− j2μ−2r−2.

Here all terms of order δ 2 and higher corrections were neglected. The leading terms
in (2.109) and (2.110) are

dt ≈ dr
√

2εμ−1 +2α(RG/r)− j2μ−2r−2
, (2.111)

dϕ ≈ j
μ

dr

r2
√

2εμ−1 +2α(RG/r)− j2μ−2r−2
. (2.112)
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An important property of this relation is that the constants β and γ do not appear
in it: they first appear in terms of higher order, which we neglected. In the case of
β , this is easy to understand since β appeared already as a coefficient in a term of
higher order in (2.99). The constant γ appears only in corrections of higher order
since the velocity was considered to be small with respect to the velocity of light.
The test particle then propagates in space–time much more strongly in time than in
spatial directions. Since γ describes the curvature of the space, it must be suppressed
relative to α . As can be easily shown (exercise), (2.111) and (2.112) (if α = 1)
coincide with the relations provided by Newton’s theory.

2.9.2 Perihelion Shift

We will now treat a relativistic correction to Newton’s theory. Consider a planet with
orbit that is given by the functions t(λ ), r(λ ), ϑ(λ ), and ϕ(λ ). It is worthwhile to
study the radial equation (2.95). We can write it in the following form:

ṙ2 +Veff = E,

where

Veff(r) = e2 − e2

AB
+

j2

Ar2 +
μ2

A
−μ2,

and
E = e2 −μ2.

(We choose the constant E such that Veff(∞) = 0.)
This equation has the form of the radial equation for a particle with mass 1/2 and

potential Veff in Newton’s theory. It is known that such a particle will move in one
direction of height E until it hits upon the potential curve in r–V graph, then it turns
around (turning point), moves backwards until it hits again upon a potential, etc. For
the planetary motion, we need exactly such a segment between two turning points.
Let us hence assume that there exists in the orbit a segment [λ1,λ2] of λ such that
the following conditions are satisfied:

(i) ṙ(λ ) > 0 λ ∈ (λ1,λ2),
(ii) ṙ(λ1) = ṙ(λ2) = 0.

We denote by R1 the smaller of the values r(λ1), r(λ2), and by R2 the larger
one. R1 is called “perihelion” and R2 “aphelion”. The whole orbit of the planet then
consists of copies of these segments and their time reversal. In order to see this, we
would like to plot the graphs of the three functions t(λ ), r(λ ), and ϑ(λ ) around the
point λ2. The initial data for the autoparallel at this point are given by

t = t2, r = R2, ϑ = 1
2π, ϕ = ϕ2,

ṫ = ṫ2, ṙ = 0, ϑ̇ = 0, ϕ̇ = ϕ̇2.
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The Lagrangian

L =
1
2

B(r)ṫ2 − 1
2

A(r)ṙ2 − 1
2

r2ϑ̇ 2 − 1
2

r2 sin2ϑϕ̇2

is invariant with respect to any of the following three reflections:

ϕ−ϕ0 →−(ϕ−ϕ0), t − t0 →−(t − t0), (λ −λ2) →−(λ −λ2).

The reflected curves represent again a solution to the autoparallel equation. Together
the original and the reflected segments make up a smooth curve. The curve com-
posed in this way therefore constitutes an extension of the original one (since it
corresponds to the same initial data at point λ2).

Next we would like to calculate the angle δϕ between the two successive peri-
helions. If Δϕ is the difference of the angle coordinate ϕ between the aphelion and
the perihelion, then we have

δϕ = 2Δϕ−2π.

The difference δϕ becomes positive if the perihelion rotates in the positive direction,
zero if it does not rotate at all, and negative if the perihelion rotates backward. We
can determine Δϕ from (2.110):

Δϕ =
∫ R2

R1

j
μ
√

A
dr

r2
√

e2μ−2B−1 − j2μ−2r−2 −1
.

The unknown constants e/μ and j/μ can be expressed by the values R1,2. Equa-
tion (2.95) implies that

e2μ−2B−1 − j2μ−2r−2 −1 = 0

at the points r = R1,2. Therefore we have two linear equations for (e/μ)2 and
( j/μ)2. A longer calculation, which consists of inserting for e/μ and j/μ in the
integral, the expansion with respect to powers of the smaller parameter RG/r and
same quadratures, yields

δϕ = 6πRG
1
2

(
1

R1
+

1
R2

)
1
3
(2α+2γ−βα−1). (2.113)

If the perihelion rotates in the positive direction we must have β < 2α2 + 2αγ , if
it rotates in the negative direction then β > 2α2 +2αγ , and if the orbit closes after
one rotation then β = 2α2 +2αγ .

Is the perihelion shift measurable at all? The big advantage of the perihelion shift
is that it is cumulative. Even though the angle difference between two successive
perihelions is very small, it becomes a large angle after a large number of rotations.
For Mercury we have for instance
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1
2

(
RG

R1
+

RG

R2

)
= 1.8×10−11,

and it makes 415 rotations per year. This leads to

415δϕ = 42.98′′
1
3

(
2α+2γ−βα−1) . (2.114)

This is the theoretical value for Mercury. The relevant results from optical obser-
vations of Mercury were obtained since 1667. After subtraction of the disturbing
influences of other planets, the residual shift is determined today from these data
with the following precision:

415δϕ
42.98′′

= 1.0034±0.0033.

In addition, there exist since 1966 radar measurements, which lead to the following
values

415δϕ
42.98′′

= 1.000±0.002. (2.115)

This means that our theoretical models of the Sun’s field (which are distinguished
from each other by the parameters α , β , and γ) are only in accordance with obser-
vation if α ≈ γ ≈ 1 leads to β ≈ 1. For more discussions, see [6, 10, 11].

The system Sun–Mercury is not the only one where relativistic corrections to
Newton’s theory can be observed. Since 1974 the so-called double pulsar PSR
1913+16 has been studied intensively. It is a double-star system. Each of the two
neutron stars has approximately the mass of the Sun and a radius of 10 km. They
turn around each other with a period of 8 h. The fields are hence a lot stronger
(but still “asymptotic”), and the velocities are a lot larger (but still non-relativistic).
Other systems of this kind were discovered in the year 1990 (PSR 2127+11C and
PSR 1534+12). Several effects can be observed, not only “α−β − γ”, for instance
gravitational waves (indirect, by decreasing the period). For details see [9].

2.10 Light Signals in the Solar System

Let us consider a light signal that passes the Sun. Its orbit is assumed to be described
by the functions t(λ ),r(λ ),ϑ(λ ), and ϕ(λ ). These functions then should satisfy
(2.95), (2.96), and (2.97) with μ = 0. For the autoparallel, the relations (2.103)
should again hold. We further assume that the photon approaches the source for
λ ∈ (−∞,λ0),

ṙ < 0,

then reaches a minimal value R of the coordinate r at λ = λ0, and then moves away
to r = ∞ for λ ∈ (λ0,∞),

ṙ > 0.
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Again the orbit is symmetric with respect to reflections in the auxiliary space (t,r,ϕ)
around the point where r = R. Hence, in the relation (2.95), first the lower sign is
the valid one and later the upper one. For R we obtain from (2.95) the following
equation:

e2

j2 =
B(R)
R2 , (2.116)

since ṙ(λ0) = 0. Equations (2.95), (2.96) (2.97), and (2.116) yield

dt = ±
√

A(r)B(R)
B(r)

r dr
√

B(R)r2 −R2B(r)
, (2.117)

dϕ = ±R
√

A(r)B(r)
r

dr
√

B(R)r2 −R2B(r)
. (2.118)

In this way, we were able to express the unknown constant e/ j by the known impact
parameter R, and the parameter λ could be excluded.

2.10.1 Deflection of Light

First we want to calculate how the gravitational field of the source deflects the pho-
tons, i.e., how the direction of the signal at the beginning differs from that at the
end. This is in principle the balance of the linear momentum, since the direction of
the 3-momentum coincides with the direction of the signal.

Let us study the pair of functions (ẋ(λ ), ẏ(λ )). Equations (2.107) and (2.108)
yield

(
ẋ(λ )
ẏ(λ )

)
= ṙ(λ )

(
cosϕ(λ )− r(λ ) dϕ

dr sinϕ(λ )

sinϕ(λ )+ r(λ ) dϕ
dr cosϕ(λ )

)

.

The deflection is obtained as the angle between the vectors (ẋ(−∞), ẏ(−∞)) and
(ẋ(∞), ẏ(∞)). Because of (2.118), we have

r(±∞)
dϕ
dr

(±∞) = 0.

Hence
(ẋ(±∞), ẏ(±∞)) = ṙ(±∞)(cosϕ(±∞),sinϕ(±∞)).

Since ṙ(−∞) < 0 and ṙ(+∞) > 0 and |ṙ(−∞)| = |ṙ(∞)| because of symmetry under
reflections, we can write

(ẋ(−∞), ẏ(−∞)) = |ṙ(−∞)| [cos(ϕ(−∞)+π),sin(ϕ(−∞)+π)]

(ẋ(∞), ẏ(∞)) = |ṙ(∞)|(cosϕ(∞),sinϕ(∞)).
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The directions of these two vectors at very distant points can be compared
despite the curvature of space–time, since their components are given with respect
to asymptotic reference frame. The light deviation δϕ is hence given by

δϕ = ϕ(∞)−ϕ(−∞)−π. (2.119)

The difference ϕ(∞)−ϕ(−∞) is calculated as follows:

ϕ(∞)−ϕ(−∞) =
∫ ∞

−∞
dλ ϕ̇ =

∫ ∞

−∞
dλ ṙ

dϕ
dr

=
∫ R

∞
dr

dϕ
dr

+
∫ ∞

R
dr

dϕ
dr

= 2
∫ ∞

R
dr

R
√

A(r)B(r)

r
√

B(R)r2 −R2B(r)

(the last equality holds because of symmetry under reflections).
The calculation of the integral up to first-order corrections in (RG/R) is a long but

relatively simple exercise. As a result, we obtain (2.120), after inserting the result
into (2.119):

δϕ = 4
RG

R
α+ γ

2
. (2.120)

The whole effect consists of two summands: the α-part and the γ-part. The α-part
for α = 1 can be derived from the Newton theory and the equivalence principle by
calculating the deflection of a massive particle, which moves with the speed of light.
The orbit will be independent of the particle’s mass. This way we can pass to the
limit μ→ 0. For the Sun, whose surface is just touched by the signal, if R equals the
Sun’s radius, we have (if the radians are transformed into degrees):

δϕ = 1.751′′ × α+ γ
2

. (2.121)

Examples of measurements are (for more discussion, see [6, 10, 11])

1. the solar eclipse observed in 1973 with the result

α+ γ
2

= 0.95±0.11,

2. the VLBI method (1991) with

α+ γ
2

= 1.0001±0.001.

The measurements are on the one hand a test that the space has to be curved: α
alone cannot explain the measurements, it is necessary to set in addition γ ≈ 1.

The light deflection is on the other hand of high importance for theoretical
physics. According to special relativity theory, no causal signal can run faster than
light. Therefore, the boundary of the light cone for future events corresponding to
a point p is the absolute boundary of the region in space–time, which can be influ-
enced from the point p. Owing to the effects of light deflections, gravitation deforms



88 2 Relativistic Particle Dynamics

this boundary. This means that the gravitational field determines the causal structure.
Black holes yield examples of causal structures that are very different from that of
Minkowski space–time.

2.10.2 Radar Echo Delay

Today it is possible to send radar signals to different objects in the solar system, to
receive the reflected signals, and to measure very precisely the difference between
the sending and receiving times. Let us consider the following experiment: we send
a signal from the Earth at radius R1, which passes very close to the Sun (impact
parameter R). This signal is reflected by a body at radius R2 and returns along the
same path to the Earth. Since the planets and satellites move slowly with respect to
the velocity of light, they can be considered as static.

The coordinate time which the radar signal starting from R1 needs to reach R is
given by (2.117):

t(R,R1) =
∫ R1

R
r

√
A(r)B(R)

B(r)
dr

√
B(R)r2 −R2B(r)

. (2.122)

The total time Δs passed until the signal returned back to the Earth is then given by

Δs = 2 [t(R,R1)+ t(R,R2)]
√

B(R1), (2.123)

where the factor
√

B(R1) transforms the coordinate time into the observer’s proper
time. A longer calculation yields

Δs = 2D+2αRG

(
1− R2

R1

)
+2(α+ γ)RG log

4R1R2

R2 , (2.124)

where

D =
√

R2
1 −R2 +

√
R2

2 −R2

is the “Euclidean distance” between the Earth and the reflecting object. If we set
α = 1, this formula is well suited to measure γ . We see that the curvature of space
enlarges the path of the light.

The delay of the radar signals was not—in contrast to the other effects that we
discussed so far—predicted by Einstein. The existence of such an effect was first
theoretically derived by I. I. Shapiro [12, 13]. In order to measure it, three different
reflecting objects were used:

(a) the planets Mercury and Venus (passive mirrors),
(b) Sun satellites as active retransmitter (Mariner 6, 7, 1975),

α+ γ
2

= 1.00±0.02,
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(c) Satellites of planets (Viking of Mars, Mariner 9 of Venus).
The Viking result [12, 13] is

α+ γ
2

= 1.00± .01.

This approximately corresponds to the result of measurements of γ by light deflec-
tion.

2.11 Exercises

1. Let M be an n-manifold with metric gμν . Prove that the signature of gμν(x) is
independent of x ∈ M .
Hint: use the following theorem from linear algebra— the eigenvalues λ1, . . . ,λn

and the eigenvectors V μ1 , . . . ,V μn of a symmetric matrix gμν ,

gμνV
ν
i = λiδμνV νi ,

depend continuously on gμν ; λi are all real, and V μi satisfy

δμνV
μ

i V νj = δi j.

2. Let M be an n-manifold with metric gμν , p∈M , and {xμ} a coordinate system
around p.
Prove that the following two equations are equivalent:

∂ρgμν(p) = 0, ∀ρ,μ ,ν ;
{ρ
μν
}

(p) = 0, ∀ρ,μ ,ν .

3. Let M be an n-manifold with affine connection Γμρσ and metric gμν .
Prove that the following two statements are equivalent:

(a) The affine connection is metric

Γμρσ =
{μ
ρσ
}

;

(b) gμνuμvν is constant along any curve C in M if uμ and vμ are vectors that
are parallel transported along C.

4. Let dlμ = (Δx0− 1
2 dx0,dxk) be the vector, which is orthogonal to the 4-velocity

of the observer xk. Prove that for the distance dl between the two observers xk

and xk +dxk holds

dl2 = −ĝkldxkdxl = −gμνdlμdlν .



90 2 Relativistic Particle Dynamics

5. A space–time is assumed to have the metric

ds2 = dt2 −R2 (dχ2 + sin2χ dϑ 2 + sin2χ sin2ϑ dϕ2) ,

where R is a constant. This is the metric of the so-called Einstein Universe
whose manifold is given by M = R×S3

R, where S3
R denotes the three- dimen-

sional surface of a sphere, i.e., imbedded in E
4 we have

S3
R =

{
x ∈ E

4|‖x‖2 = R2} ,

and the metric on S3
R is obtained if we parameterize with the four-dimensional

spherical coordinates 0 ≤ χ ≤ π , 0 ≤ ϑ ≤ π , and 0 ≤ ϕ ≤ 2π .
Calculate

(a) autoparallel equation,
(b) the components of the affine connection,
(c) the metric ĝkl for the observer along the t-curve,
(d) all light rays that satisfy the condition ϑ̇ = ϕ̇ = 0; how long does it take for

the light to pass around the entire universe?

6. Write the static metric as follows

ds2 = V 2dt2 − γkldxkdxl ,

k, l = 1,2,3, where V = V (x1,x2,x3) and γkl = γkl(x1,x2,x3).
Calculate all Christoffel symbols Γμρσ of the 4-metric dependent on V and γkl

and show that
Γk

i j = γk
i j,

where γk
i j are the Christoffel symbols of the 3-metric γkl .

7. Rewrite the equation of motion of a test particle in the static space–time of
Exercise 6 as a system of three equations for the three functions x1(λ ), x2(λ ),
and x3(λ ) (x0(λ ) is no longer present; the appearance of the integration con-
stant in the equation should not be confusing).
Find a conserved quantity for this system that only depends on xk(λ ) and ẋk(λ ),
k = 1,2,3.

8. Use the results of Exercise 7 to determine the 4-curvature tensor.

(a) Show that
Rk

lmn = rk
lmn,

where rk
lmn is the curvature tensor of the 3-affine connection γk

mn.
(b) Show that

R0
lmn = 0.

(c) Show that

R0
k0l =

−V,kl + γm
lkV,m

V
.
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9. Calculate the vector fields ξ k
x , ξ k

y , and ξ k
z that generate the rotations around the

three axes x, y, and z of E
3. Calculate in Cartesian coordinates x, y, and z and

transform the result into spherical coordinates r, ϑ , and ϕ .
Prove that

(a) the three vector fields ξ k
x , ξ k

y , and ξ k
z are Killing vectors of the metric

ds2 = dx2 +dy2 +dz2;

(b) the three vector fields ημx , ημy , and ημz defined by

η0
x = η0

y = η0
z = 0

and
ηk

x = ξ k
x , ηk

y = ξ k
y , ηk

z = ξ k
z

(in spherical coordinates!) are Killing vectors of the metric

ds2 = g00(t,r)dt2 +2g01(t,r)dt dr−g11(t,r)dr2 − r2(dϑ 2 + sin2ϑ dϕ2).

Exercises 10–13 deal with an arbitrary static, rotationally symmetric, and
asymptotically flat space–time.

10. Consider a free particle of mass m, which decays at a given point in space–time
into two free particles of masses m1 and m2. Assume that the trajectories of the
three particles are parameterized by the physical parameter; let E, E1 and E2,
Lx, Ly and Lz, L1x, L1y and L1z, L2x, L2y and L2z be the corresponding integrals
of motion.
Prove the equations:

E = E1 +E2,

Lx = L1x +L2x,

Ly = L1y +L2y,

Lz = L1z +L2z.

11. A free particle of mass μ starts from r = ∞ with energy E, then reaches a point
with coordinates r = R, and decays in a bound (i.e., it can never reach r = ∞)
free particle of mass μ1 and a second free particle of mass μ2, which does reach
r = ∞ with energy E2.

(a) Can the asymptotic observers gain energy through this process?
(b) The same question for angular momentum Lx,Ly,Lz.

12. Calculate the 4-acceleration of a circular motion of radius r = R for a free par-
ticle. (Is it necessary to calculate a lot?)

13. Calculate the energy E and the angular momentum L of a purely circular motion
of radius r = R for a free particle of mass μ in the asymptotic region. Use the
metric where all quadratic and higher terms in RG/r are negligible.
Hint: analogy to the “Kepler problem and effective potential” of mechanics.
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14. Write the Newtonian Lagrangian for the motion of a mass point of mass μ
in the gravitational field of a central mass M . Use the conservation laws for
the energy E and the angular momentum L in order to transform the dynamic
equations into the form

dt = Ft(μ ,M,E,L;r)dr,

dϕ = Fϕ(μ ,M,E,L;r)dr.

Find the functions Ft and Fϕ and compare them with the relativistic formulas.
15. The double pulsar PSR1913+16 [10] is a system of two neutron stars with

masses of about 1.4 MSun each and with radii of about 10 km, which circle
around each other. The periastron shift was observed: δϕ ≈ 4.2o per year! Use
our formula for the periastron shift and the Newtonian Kepler’s law in order to
estimate (a) the distance between the two stars and (b) the period of the motion.

16. Illustration of the curvature of space around a star: find the rotation surface
in E

3, whose metric coincides up to terms of order RG/r with the one that
is carried by the equatorial surface ϑ = π/2, t =const (Robertson–Eddington
expansion).
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Chapter 3
Field Dynamics

In the previous chapter we studied the movement of mass points in curved
space–times. We gained insight into how the curvature of thespace–time affects the
dynamics of mass points and light rays. In modern theoretical physics however, not
particles but fields are the elements of nature. In this chapter we shall turn our at-
tention to fields. We shall not build a field theory systematically, but introduce some
basic notions that are essential for the further development of general relativity.
Among these are the covariant derivative for arbitrary tensor fields, the stress-energy
tensor, and some material on variation principles. We will assume knowledge of the
most important facts about relativistic field theories, such as electromagnetism [1].
The focus will lie on the field theories, which are important for astrophysics. These
are mainly electrodynamics (magnetic fields become quite strong and important in
space—look, e.g., at the X-ray plates of the Sun [2] to see some magnetic field that
is not tiny!) and hydrodynamics.

3.1 Electrodynamics

In this section we will study the dynamics of electromagnetic fields under the influ-
ence of gravity. We will exclusively use the formalism of 4-vectors and tensors ([1],
p. 377). For example, the potential φ and the vector potential Ak form the 4-potential
Aμ with four components A0 =−φ , Ak. The electromagnetic field in special relativ-
ity is described by this 4-potential Aμ(x). It is a covector field, that is an assignment
of a covector, which is given by its components Aμ(x) relative to an inertial frame,
to every point x of Minkowski space–time. The tensor of the electromagnetic field
is then defined by

Fρσ = ∂ρAσ −∂σAρ . (3.1)

The meaning of the components of Fμν in an inertial frame follows from the so-
called 3 + 1 splitting

Ek = Fk0 , Bk = (1/2)∑
r,s
εkrsFrs ,

Hájı́ček, P.: Field Dynamics. Lect. Notes Phys. 750, 93–124 (2008)
DOI 10.1007/978-3-540-78659-7 3 c© Springer-Verlag Berlin Heidelberg 2008
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where Ek and Bk denote the electric and magnetic field respectively. εkrs is a very
useful expression, which is totally antisymmetric in all three indices k = 1,2,3,
r = 1,2,3, and s = 1,2,3, with ε123 = 1. This determines εkrs uniquely. One can
show the important identity

∑
k

εkmnεkrs = δmrδns −δmsδnr . (3.2)

(Proof: exercise). The physical content of the potential is not affected by a gauge
transformation:

Aμ �→ Aμ +∂μΛ , (3.3)

where Λ is an arbitrary function, Fμν is gauge-invariant.
The dynamics of the (free) field are determined by the action principle δS = 0,

where

S = − 1
16π

∫
d4xFρσFρσ , (3.4)

and
Fρσ = gρκgσλFκλ . (3.5)

Since we are working in an inertial frame, the metric gμν of flat space–time has the
canonical form gμν = ημν .

3.1.1 Equivalence Principle

We want to generalize the Lagrangian (3.4) in such a way that it is still valid in the
presence of gravity. To this end, we use the equivalence principle in form of the
principle of general covariance: we transform the Lagrangian (3.4) to an arbitrary
curvilinear coordinate system in flat space–time and replace the transformation co-
efficients Xμν by expressions in the metric components. Then we postulate that the
resulting Lagrangian induces the correct dynamics in curved space–times (minimal
coupling).

Thus, let {xμ} be the coordinates of an inertial frame and {x′μ} coordinates of
an arbitrary reference frame. Aμ(x) transforms like a covector, that is

Aμ(x) = Xρ
′
μ A′

ρ
(
x′
)

,

where x and x′ are the coordinates of the same point with respect to the two systems.
We obtain

Fμν = Xρ
′
μ Xσ

′
ν F ′

ρσ , (3.6)

where
F ′
ρσ = ∂ ′ρA′

σ −∂ ′σA′
ρ (3.7)

is defined in curvilinear coordinates exactly as in an inertial frame (we denoted
∂/∂x′ρ as ∂ ′ρ ). Equations (3.6) and (3.7) hold in general: anti-symmetrized
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derivatives of a covector field transform as a tensor. Hence, we can transform the
scalar FρσFρσ in the Lagrangian (3.4):

FρσFρσ = gρκgσλFκλFρσ = g′ρκg′σλF ′
κλF ′

ρσ ,

since g and F are tensors. This expression no longer contains the transformation

coefficients Xρ
′
μ or derivatives thereof. We are left with the task to transform the

volume element d4x to curvilinear coordinates. We have the following theorem.

Theorem 8 The value of the following expression is independent of coordinates:

d4x
√
−g

(Proof: exercise 2). Here we introduced the useful shorthand

g = det(gμν) . (3.8)

Hence, if x are inertial and x′ are curvilinear coordinates then we have

d4x = d4x′
√
−g′ . (3.9)

This important equation expresses the invariant volume element with respect to arbi-
trary coordinates in terms of the metric components in these coordinates. We remark
that (3.9) can be derived in the same way for arbitrary dimension n of the manifold
in question. We just have to replace the number 4 by n. Then the right-hand side can
be used to compute the volume element of a surface for example.

With (3.9) we can write the action (3.4) with respect to arbitrary coordinates
(where we omit the primes):

S = − 1
16π

∫
d4x

√
−ggρκgσλFκλFρσ . (3.10)

Postulate 3.1 The dynamics of the electromagnetic field in curved space–times is
determined by the variation principle with action (3.10). The action is a function of
the potential Aμ(x), where

Fμν = ∂μAν −∂νAμ . (3.11)

The action (3.10) is invariant with respect to gauge transformations (3.3). The mea-
surable content of the field tensor at a point p with respect to a local inertial frame
at p is

Fk0 = Ek, Fkl =∑
m
εklmBm, (3.12)

where Ek and Bk represent the components of the electric and magnetic field for the
corresponding observer.
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3.1.2 The Maxwell Equations

We obtain the second set of the generalized Maxwell equations by variation of the
action (3.10) with respect to Aμ . To simplify the computation, we assume that the
variation δAμ(x) has compact support in our curved space–time. Then it vanishes
along the boundary, and thus all boundary integrals resulting from partial integration
must vanish. We compute the variation for a constant metric δgμν(x) = 0, and obtain
step by step:

δS = − 1
16π

∫
d4x

√
−ggρκgσλ δ

(
FκλFρσ

)

= − 1
8π

∫
d4x

√
−ggρκgσλFκλ δFρσ

= − 1
8π

∫
d4x

√
−ggρκgσλFκλ

(
∂ρδAσ −∂σδAρ

)

= − 1
4π

∫
d4x

√
−ggρκgσλFκλ ∂ρδAσ

=
1

4π

∫
d4x∂ρ

(√
−ggρκgσλFκλ

)
δAσ .

Hence, the equation

∂ρ
(√

−ggρκgσλFκλ
)

= 0 (3.13)

follows. This is the desired generalization of the second set of Maxwell’s equations
in curved space–times. For the flat space–time and with respect to an inertial frame
or for curved space–times in a local inertial frame, the correct equations ∂ρFρσ = 0
for the free field result. The first set of Maxwell’s equations follows directly from
the definition of Fρσ , since (3.11) implies

∂τFρσ +∂ρFστ +∂σFτρ = 0. (3.14)

Hence, the metric only enters the second set of equations.
Equations (3.13) and (3.14) are supposed to describe the dynamics of the elec-

tromagnetic field in the gravitational field. In particular, they should describe the
deviation of light in the gravitational field of the Sun and the redshift. We remark
without proof that they actually do so.

Equations (3.13) and (3.14) apparently hold in arbitrary coordinates, since we
did not need any restrictions for their deduction. However, the form of the equations
does not reflect this. We already know that the coordinate derivatives of the tensor
fields involved do not transform like tensors. Thus, it is not a priori clear, whether
the left-hand sides vanish in every coordinate system if they vanish in a particular
one (exercise). We will return to this problem later.
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3.1.3 The Stress-Energy Tensor

The stress-energy tensor in general relativity plays a similar role as the current
4-vector in electrodynamics: it is the source of the field. In non-relativistic theory,
the mass density is such a source, it is the right-hand side of the Poisson equation.

In a non-relativistic theory, it is completely satisfactory that any given (exten-
sive) quantity has a corresponding density. For example, the charge Q, which is a
scalar, defines the charge density ρ , a scalar field, by the following relation. The
total charge dQ in a volume element dV at a point p is dQ = ρ(p)dV . However,
in special relativity the 3-volume is not absolute, it depends on the observer. For
an observer with 4-velocity uμ , it is orthogonal to uμ . Consequently, the 3-volume
element is defined not only by its magnitude dV but also by its normal uμ [1]. It is
well known that the total charge dQ in a 3-volume dV of an observer with 4-velocity
uμ is given by dQ = jμ(p)uμdV , where jμ(x) is a vector field called the current of
electric charge. In special relativity, this 4-component current plays the role of the
charge density ρ(x).

Similar rules hold for tensor quantities: they determine currents having one extra
index. The energy, for example, is the 0-component of the momentum 4-vector,
Pμ . Hence, the corresponding density must be a 4-tensor T μν(x) of second order,
determined by the equation

dPμ = T μν(p)uνdV , (3.15)

where dPμ is the total momentum in direction μ in the 3-volume element dV of
the observer at a point p with 4-velocity uμ . We adopt this equation in general
relativity.

In general, we can obtain the current, that is the source of a field ϕ , by variation
of the actions of the other fields with respect to ϕ . This originates from the fact that
the total action of a field system can be represented as the sum of the actions of the
individual fields,

Stot = S[ϕ]+S1[ψ1, . . . ,ψn,ϕ] ,

where ψ1, . . . ,ψn are the fields in the system which are non-trivially coupled to ϕ .
The field equation for ϕ then becomes

δS
δϕ

= −δS1

δϕ
.

The left-hand side of this equation agrees with the left-hand side of the free dynam-
ical equation,

δS
δϕ

= 0

for the field ϕ . Then the right-hand side is the sum of the sources formed by the
other fields.

The electromagnetic field carries energy and thus has a non-trivial coupling to
gravity—it generates a gravitational field. We obtain the corresponding source term
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by variation of the action (3.10) with respect to gμν (or with respect to gμν ). That
is, we have to compute the variation of S with δgμν �= 0 and δAμ(x) = 0. To begin
with, we infer

δS = − 1
16π

∫
d4xδ

(√
−ggρκgσλ

)
FκλFρσ .

Before we continue, we need the variation of the determinant. We have the important
formula (exercise):

δ
√
−g = −(1/2)

√
−ggμνδgμν . (3.16)

Then we can compute the variation as follows:

δS =
1

16π

∫
d4xδ

(√
−ggρκgσλ

)
FκλFρσ

= − 1
16π

∫
d4x

(
−(1/2)

√
−ggμνgρκgσλ +

√
−gδρμ δκν gσλ

+
√
−gδσμ δλν gρκ

)
FκλFρσδgμν

= − 1
16π

∫
d4x

√
−g

(
F σ
ν Fμσ +FρνFρμ − (1/2)gμνFρσFρσ

)
δgμν

= +
1
2

∫
d4x

√
−g

[
− 1

4π

(
FμσF σ

ν − 1
4

gμνFρσFρσ

)]
δgμν .

The expression in square brackets is called the electromagnetic stress-energy tensor,
T EM
μν :

T EM
μν = − 1

4π

(
FμσF σ

ν − 1
4

gμνFρσFρσ

)
. (3.17)

Clearly, it is a tensor that is symmetric in both indices.
We can write the resulting relation as follows:

δSM

δgμν(x)
= (1/2)

√
−g(x)Tμν . (3.18)

The term on the left-hand side is the variational derivative of the functional S with
respect to the variables gμν(x) (which are distinguished from each other not only
by the indices but also by their arguments xμ ). This variational derivative is defined
as the coefficient of δS in the variation of the variable gμν(x). This is analogous to
the partial derivative of a function of multiple variables: the partial derivative with
respect to a variable is the coefficient of the differential of this variable in the total
differential of the function. Equation (3.18) can be regarded as the general definition
of the stress-energy tensor. It determines the numerical factors in front of the action
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integrals, that is the normalization of the actions for the individual fields, since the
form of the stress-energy tensor for every field is known.

By the usual dimension estimate (in a local inertial frame with c = 1), we find that
in general the variational derivative (3.18) has the dimensions of energy density. The
dimension of the action is [E ×T ], the dimension of d4x is L3×T , whereas δgμν(x)
and

√−g are dimensionless. Therefore the dimension of δS/(
√−gδgμν(x)) is [E×

T ]/[L3 ×T ] = [E/L3].
The meaning of the components of the stress-energy tensor, given by (3.15), can

be verified by computing these components with respect to a local inertial frame. In
such a frame, we have the relations (3.12). First we compute

T EM
00 = − 1

4π

[
F0kF k

0 − (1/4)
(

F0kF0k +Fk0Fk0 +FklF
kl
)]

=
1

4π

[

∑
k

F0kF0k +(1/4)

(

−2∑
k

F0kF0k +∑
kl

FklFkl

)]

.

From (3.2) we infer that

∑
kl

εklmεkln = 2δmn .

Together, we obtain

T EM
00 =

1
8π

(
E2 +B2) .

This is the energy density (or mass density, c = 1) of the electromagnetic field. In a
similar way, we obtain that

T EM
0k = − 1

4π

[
�E ×�B

]

k
.

This is the so-called Poynting vector, giving the 3-momentum density, or equiva-
lently, the energy current density.

In special relativity, the stress-energy tensor satisfies the divergence equation.
This follows from the Maxwell equations and the following identity:

∂ν
(

FμρFνρ − 1
4
ημνFρσFρσ

)

= −Fμρ (∂νFρν)− 1
2
ημνFρσ

(
∂νFρσ +∂ρFσν +∂σFνρ

)
.

This immediately implies the claim. Via the Gauss theorem, the divergence equation
implies conservation of total energy:

E :=
∫

Σ
d3xT 00 , Pk :=

∫

Σ
d3xT 0k ,

where Σ is a time slice x0 = const.
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3.2 Variation Principle

We start by defining and examining the transformation properties of tensor fields.
The transformation properties are their most important properties. It influences
other, less formal properties of the fields like their dynamics. Indeed, the dynam-
ics are determined by a Lagrange function (Lagrangian is, roughly, the integral of
Lagrange function over the space), and the Lagrange function has to be invariant (as
we will see later). How an invariant can be constructed from the components and
the derivatives of a field depends on their respective transformation behavior.

Here, we focus our attention to tensor fields. Spinor fields are at least as important
to theoretical physics [3], but they do not play much role in astrophysics.

3.2.1 Transformation Properties of Tensor Fields

Consider a fixed space–time M with metric gμν and choose a coordinate sys-
tem {xμ}.

Definition 15 A tensor field of type (p,q) is a map which assigns to every point r
in a set G ⊂ M a tensor T μ...

ν ... in r of type (p,q). G is called the domain of the tensor
field.

In a coordinate system {xμ}, a tensor field is described by 4p+q C∞ functions
T μ...
ν ... (x0,x1,x2,x3), where T μ...

ν ... (r) are the components of the tensor at the point r
and (x0,x1,x2,x3) are the coordinates of r with respect to {xμ}. These functions are
called the component functions of the tensor field with respect to {xμ}.

For example, Φ(r), a scalar field, is given by a function Φ(x0,x1,x2,x3) (a tensor
of type (0,0)), and Aμ(r), a vector potential, is given by four functions A0(x0,x1,
x2,x3), . . ., A3(x0,x1,x2,x3).

Let {x′μ} be a different coordinate system. With respect to {x′μ}, the same tensor
field is represented by different functions. We obtain the transformation from one
set of functions to the other in two steps. First, the arguments of the functions have
to be transformed:

xμ = xμ
(
x′0,x′1,x′2,x′3

)
. (3.19)

Second, we have to form linear combinations of the resulting functions according
to the transformation rule for the respective tensor type. For example, the vector
potential transforms like

A′
μ
(
x′0,x′1,x′2,x′3

)
= Xρμ ′

(
x′0,x′1,x′2,x′3

)
Aρ

(
x0(x′),x1(x′),x2(x′),x3(x′)

)
,

where we have to insert (3.19) for xμ on the right-hand side. The (single) component
of the scalar field also transforms non-trivially:

Φ′ (x′0,x′1,x′2,x′3
)

=Φ
(
x0(x′),x1(x′),x2(x′),x3(x′)

)
.
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3.2.2 The Action

The variation principle of the action S is used to derive the dynamics of a system. It
serves as a common foundation for mechanics and field theory, in classical as well
as in quantum theory.

Let (M,g) be a space–time and ψa(x) a system of fields. The index a enumerates
the components of a whole system of fields, including the metric. For example

a 1 2 3 4 . . .
ψa(x) Φ g00 g01 g02 . . . ,

is a system of a scalar field Φ(x) and the metric gμν(x).
At first, we recall the most important requirements for the action in theoretical

physics.
The form of the action: In field theory, we will work with actions of the follow-

ing form:

S =
∫

V
d4x

√
−gL, (3.20)

where V is an open set in M, xμ are coordinates in a neighborhood of V , and L is the
so-called Lagrange function, a function of the fields ψa(x) and their first derivatives
ψa

,μ(x), at the point xμ :
L = L

(
ψa(x),ψa

,μ(x)
)

. (3.21)

In particular, the Lagrange function must not depend on higher derivatives.
The determinant

√−g has been separated from L. The reason is that
√−g d4x is

an invariant volume element, as we have seen in Sect. 3.1.1. However, we could let
L = L

√−g and work with L instead of L. L is the so-called Lagrangian density.
The most important property of the Lagrange function (or Lagrangian density) is its
functional character: It is independent of the coordinates we are working with.

General covariance: Let L(x) be the composite function given by (3.21). Then,
up to a divergence term, L(x) is a scalar field on M, that is

L(x) = σ(x)+
1√−g
∂μV μ(x) , (3.22)

where σ(x) is a scalar field of the form

σ(x) = σ
(
ψa(x),ψa

,μ(x),ψa
,μν(x), . . .

)

and the 4-component quantity V μ(x) has to transform such that (3.22) holds in ar-
bitrary coordinate systems. This assumption implies that with respect to coordinate
transformations the action is invariant up to surface integrals along the boundary ∂V
of V .

The special role of gravity: The Lagrange function L shall consist of two
terms:

L = LG +LM , (3.23)
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where LG = L(gμν ,gμν ,ρ) is the Lagrange function for the gravitational field and
LM describes “the rest of the world” (matter). Note that the Lagrange function of
the gravitational field does not depend on any other field than the metric.

The field equations: Let ψa(x) be a system of fields. Then the dynamically
admissible fieldsψa(x) are those for which the action (3.20) is extremal with respect
to all variations with compact support in V .

Now we can understand the significance of the invariance of the action with
respect to coordinate transformations. Let ψa(x) be an extremal field. Perform a
coordinate change which is the identity outside a compact subset of the domain of
integration V . Then the value of the action does not change, that is the transformed
components ψ ′a(x′) are still extremal. The property of being a dynamically admis-
sible field is invariant under such transformations.

Example: It is easy to compose scalars of the form (3.21) from a scalar field
Φ(x) and its first derivatives Φ,μ(x). Every function F(Φ(x)) is a scalar field. As
Φ,μ(x) is a covector, the natural scalar to form with the metric is the square of the
norm of the covector:

gμνΦ,μ(x)Φ,ν(x) .

If we require that the scalar (3.21) be quadratic in Φ(x) and Φ,ν(x), we obtain a
two-parameter family of Lagrange functions:

L = a
(
gμνΦ,μ(x)Φ,ν(x)+bΦ2) .

The constant a normalizes the action such that the stress-energy tensor takes the
right value. Coefficient b is a measurable parameter,

√
−b is called the mass of the

field.

3.2.3 Variation Formula

We need very general variations of the action. For example, the variation defined
by (infinitesimal) coordinate transformations. Such variations do not commute with
partial derivatives with respect to the coordinates δ∂μ �= ∂μδ . Thus, we have to find
a way to calculate δS that does not depend on this assumption.

We want to compute the change of

S =
∫

d4xL

generated by an infinitesimal variation of the independent, as well as the dependent
variables:

x′μ = xμ +δxμ(x) , (3.24)

ψ ′a(x′) = ψa(x)+δψa(x) , (3.25)

ψ ′a
,μ(x

′) = ψa
,μ(x)+δψa

,μ(x) . (3.26)
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This kind of variation arises from comparing the new and old values of the fields
(including the coordinates) in fixed points of space–time. This defines a variation
of ψa(x) which does not commute with coordinate derivatives. To see this, we dif-
ferentiate both sides of (3.25) with respect to xμ . On the left-hand side, we obtain,
using (3.24) and (3.26),

∂
∂xμ

ψ ′a(x′) =
∂x′ν

∂xμ
ψ ′a

,ν(x
′) = ψ ′a

,μ(x
′)+ψ ′a

,ν(x
′)∂μδxν(x)

= ψa
,μ(x)+δψa

,μ(x)+ψa
,ν(x)∂μδxν(x)

(where we neglected terms of second order in the variations). On the right-hand side
we simply have

ψa
,μ(x)+∂μδψa(x) .

Hence the commutator satisfies

∂μδψa(x)−δψa
,μ(x) = ψa

,ν(x)∂μδxν(x) . (3.27)

This motivates the introduction of another type of variation δ∗, which is sometimes
called form-variation. In our case, it is defined as follows:

δ∗ψa(x) = ψ ′a(x)−ψa(x) , (3.28)

δ∗ψa
,μ(x) = ψ ′a

,μ(x)−ψa
,μ(x) . (3.29)

These are variations of the form of the component functions of the tensor fields,
where we compare the values of these functions for the same value of their argu-
ments. Then δ∗ commutes with partial coordinate derivatives, which follows imme-
diately from its definition. Thus, we are left with the task to compute the relationship
of the two types of variation:

δψa(x) = ψ ′a(x′)−ψa(x) = ψ ′a(x)+∂μψ ′a(x)δxμ(x)−ψa(x)

= δ∗ψa(x)+ψa
,μ(x)δxμ(x) . (3.30)

Similarly, we infer

δψa
,μ(x) = δ∗ψa

,μ(x)+ψa
,μν(x)δxν(x) . (3.31)

With these tools at hand, we are able to compute the variation of the action as fol-
lows:

δS =
∫

V ′
d4x′L (ψ ′a(x′),ψ ′a

,μ(x
′))−

∫

V
d4xL (ψa(x),ψa

,μ(x)) .

The first integral is over all values of x′ which correspond to the set V for x. In the
first integrand we substitute x′μ = xμ +δxμ(x) and find
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L
(
ψ ′a(x′),ψ ′a

,μ(x
′)
)

= L
(
ψa(x),ψa

,μ(x)
)
+

∂L

∂ψa(x)
δψa(x)+

∂L

∂ψa
,μ(x)

δψa
,μ(x) .

Furthermore,

d4x′ = det
(

Xμ
′

ν

)
d4x = det

(
δ μν +∂νδxμ

)
d4x = det(δ μν )d4x

+
∂ det(Aμν )
∂Aμν

∣∣
∣∣
Aμν=δ μν

∂νδxμ d4x = d4x+δνμ ∂νδxμd4x

=
(
1+∂μδxμ

)
d4x .

Altogether we obtain (where we neglected terms of higher order in the variations)

δS =
∫

V
d4x

(

L ∂μδxμ +
∂L

∂ψa(x)
δψa(x)+

∂L

∂ψa
,μ(x)

δψa
,μ(x)

)

.

Now we express the variation in terms of δ∗:

δS =
∫

V
d4x

[
L ∂μδxμ +

(
∂L

∂ψa(x)
∂ψa(x)
∂xμ

+
∂L

∂ψa
,ν

∂ψa
,ν(x)
∂xμ

)
δxμ(x)

+
∂L

∂ψa(x)
δ∗ψa(x)+

∂L

∂ψa
,ν(x)

δ∗ψa
,μ(x)

]
.

The expression in parentheses is the composed derivative of L with respect to xμ :

∂ c

∂xμ
L =

∂L

∂ψa(x)
∂ψa(x)
∂xμ

+
∂L

∂ψa
,ν(x)

∂ψa
,ν(x)
∂xμ

.

It is still a partial derivative with respect to other coordinates xλ , λ �= μ . If we use
the fact that ∂μ and δ∗ commute, we can write the result in the following, simple
form:

δS =
∫

V
d4x

[
∂ c

∂xμ

(

L δxμ +
∂L

∂ψa
,μ
δ∗ψa(x)

)

+

(
∂L

∂ψa(x)
− ∂
∂xμ

∂L

∂ψa
,μ(x)

)

δ∗ψa(x)

]

. (3.32)

This is the variation formula [4].
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3.2.4 Field Equations of Matter

We now use the variation principle and the variation formula to derive the equations
of motion for the matter fields.

We begin by splitting the system in matter fields ϕa(x) and the metric gμν(x).
We compute the variation of the action in V with

δxμ ≡ 0, δgμν ≡ 0 . (3.33)

Hence, coordinates and metric stay fixed. Because of (3.33), equation (3.30) gives
δ∗ϕa = δϕa, and all that remains in the variation formula (3.32) is

δS =
∫

V
d4x

[
∂ c

∂xμ

(
∂L

∂ϕa
,μ(x)

δϕa(x)

)

+

(
∂L

∂ϕa(x)
− ∂ c

∂xμ
∂L

∂ϕa
,μ(x)

)

δϕa(x)

]

.

(3.34)

S is extremal, if δS vanishes for arbitrary variations δϕa(x) with compact support
in V . This implies

∂L

∂ϕa(x)
− ∂ c

∂xμ
∂L

∂ϕa
,μ(x)

= 0 . (3.35)

Equation (3.35) is the desired field equation. The divergence term equals a surface
integral on the boundary of the support of the variation and thus vanishes.

Example: Consider a scalar field Φ(x) with Lagrange function

L = (1/2)gμνΦ,μΦ,ν − (1/2)m2Φ2.

We have
∂L

∂Φ
= −

√
−gm2Φ,

∂L

∂Φ,μ
=
√
−ggμν∂νΦ.

Thus the field (3.35) becomes

1√−g
∂μ
(√

−ggμν∂νΦ
)
+m2Φ= 0. (3.36)

This generalizes the Klein–Gordon equation to curved space–times.

3.3 Covariant Derivative

The dynamical laws for the fields—the so-called field equations—take the form of
differential equations. The evolution of the fields depends on the difference of the
excitation in neighboring points. (A simplified model would be a coupled system of
pendulums.)
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However, in curved space–times, we face the following difficulty. Consider the
familiar example of a covector field Aμ(x). Its partial derivatives transform as fol-
lows:

∂A′
μ(x)
∂x′μ

(p) = Xρμ ′(p)Xσν ′(p)
∂Aρ(x)
∂xσ

(p)+Xρμ ′ν ′(p)Aρ(p) . (3.37)

We see that we can make this derivative arbitrarily large at any point p by suitably
choosing the derivatives

Xρμ ′ν ′(p) :=
∂ 2xρ

∂x′μ∂x′ν
(p)

at p. This even works if the derivative of the field
∂Aρ (x)
∂xσ (p) vanishes at p. Thus, the

partial derivative of the components of a covector is not a suitable differential op-
erator for the field equations. Therefore, the differential operators in the previously
derived field equations must have a more geometric meaning. We will see that we
can express them in terms of the so-called covariant derivative.

3.3.1 Definition of the Covariant Derivative

In special relativity the above objection to the partial derivatives with respect to
coordinates does not hold. If we are working exclusively in an inertial frame, then
all transformations are linear, and we have

∂ 2xρ

∂x′μ∂x′ν
(p) = 0, ∀p.

The difference of the components of the tensor in neighboring points, computed in
this way, is meaningful and useful.

In general relativity there is an analogy to the inertial frame, namely the local
inertial frame. Although they are defined only locally, they are sufficient for our
purposes. To illustrate this, consider two local inertial frames x̄μ and x̄′μ at p. The
corresponding coordinate transformation is

x̄′μ = x̄′μ
(
x̄0, · · · , x̄3) ,

where always
∂ 2x̄ρ

∂ x̄′μ∂ x̄′ν
(p) = 0 .

This follows from the definition of a local inertial frame as Γ̄′μνρ(p) = 0 and
Γ̄μνρ(p) = 0, and the transformation rule of the affine connections given by (1.9).
We find

X ᾱ
′

ρ̄
∂ 2x̄ρ

∂ x̄′μ∂ x̄′ν
(p) = 0
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which is equivalent to the previous equation. Hence, we have

∂ Ā′
μ(x̄

′)
∂ x̄′μ

(p) = X ρ̄μ̄ ′(p)X σ̄ν̄ ′(p)
∂ Āρ(x̄)
∂ x̄σ

(p) .

Therefore the (first) derivatives with respect to local inertial frame coordinates trans-
form like tensors, as in special relativity. We just have to use the local inertial frames
at a point p to compute the derivative of a field at p.

In this way we can define the derivative in a restricted set of coordinate systems
only. How can this definition be extended to general coordinate systems? This is
as simple as to postulate that the derivative be a tensor. The logical structure is as
follows. First, one computes the components of an object with respect to a partic-
ular coordinate system. Second, the components with respect to another, arbitrary
coordinate system are given by those with respect to the original system and the
transformation law. This makes the object well defined as a differential geometric
object, as all its components are known in any coordinate system.

Definition 16 Let T μ...
ν ... (x) be the component functions of a tensor field of type (p,q)

in the coordinates xμ . Then ∇ρT μ...
ν ... (x) are the component functions of a tensor field

of type (p,q + 1) in xμ , which satisfy the following condition. With respect to an
arbitrary local inertial frame x̄μ at an arbitrary point r we have

∇̄ρ T̄ μ...
ν ... (x̄) :=

∂ T̄ μ...
ν ...
∂ x̄ρ

(x̄) .

The tensor field defined in this way is the covariant derivative of the tensor field
T μ...
ν ... (x).

3.3.2 Direct Expression for the Covariant Derivative

The previous definition has some useful aspects, but is not very handy to use. For
example, to show that the tensor field defined in this way has smooth component
functions, provided the original field is smooth, would be very cumbersome. To do
this, one has to know the covariant derivative in one coordinate system in a whole
neighborhood of a point.

The definition obviously depends on the affine connection of the manifold. If
we know the Γs, we compute the local inertial frame and the covariant derivative.
But there is also a direct expression, which holds in a single coordinate system and
contains the Γs. We now derive such an expression.

Let p be an arbitrary point, x̄μ a local inertial frame at p, and xμ an arbitrary
coordinate system near p. Then the definition implies that the components of the
covariant derivative ∇ρT μ...

ν ... (p) satisfy

∇ρT μ...
ν ... (p) =

(
Xμᾱ . . .X β̄ν . . .X γ̄ρ ∂γ̄ T̄α...

β ...

)
(p) .
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The expression on the right-hand side can be rearranged as follows:
(

Xμᾱ . . .X β̄ν . . .
(

X γ̄ρ ∂γ̄ T̄α...
β ...

))
(p) =

(
Xμᾱ . . .X β̄ν . . .

∂
∂xρ

(
T̄α...
β ...

))
(p)

=
∂
∂xρ

(
Xμᾱ . . .X β̄ν . . . T̄α...

β ... )
)

(p)

−
(
∂Xμᾱ
∂xρ

. . .X β̄ν . . . T̄α...
β ...

)
(p)−·· ·−

(

Xμᾱ . . .
∂X β̄ν
∂xρ

. . . T̄α...
β ...

)

(p)−·· · ,

where the dots in the sum represent similar terms, which come from the correspond-
ing derivatives of the remaining transformation coefficients X κ̄λ or Xκλ̄ . Furthermore,
the derivatives of the transformation coefficients satisfy

∂Xμᾱ
∂xρ

= Xμᾱγ̄X
γ̄
ρ =

∂
∂ x̄α

(
Xμγ̄ X γ̄ρ

)
−Xμγ̄ X γ̄ρλXλᾱ =

∂δ μρ
∂xᾱ

−Xμγ̄ X γ̄ρλXλᾱ = −Xμγ̄ X γ̄ρλXλᾱ

and
∂X β̄ν
∂xρ

= X β̄νρ = X β̄σ Xσγ̄ X γ̄ρν .

These derivatives can now be expressed in terms of the Γs, as the transformation
rule for the affine connection yields

Γμνρ = Xμγ̄ X γ̄νρ .

Hence
∂Xμᾱ
∂xρ

= −ΓμλρXλᾱ ,
∂X β̄ν
∂xρ

= ΓσνρX β̄σ .

This results in the desired general expression:

∇ρT μ...
ν ... = ∂ρT μ...

ν ... +ΓμλρT λ ...
ν ... + · · ·−ΓσνρT μ...

σ ... −·· · . (3.38)

Let us discuss this important formula. The structure of the right-hand side is simple:
the first term is the corresponding coordinate derivative of the field. In addition,
there are correction terms, one for each index of the field. The sign “+” is used
for contravariant indices, and the sign “−” for covariant indices. The correction
terms are formed from products of the tensor with the Γs such that Γ carries the
corresponding index of the tensor, a summation index appearing also in the tensor,
and the index of the derivative. We always write the index of the derivative (here ρ)
as the last lower index at Γ.

Examples: A scalar field Φ(x):

∇ρΦ(x) = ∂ρΦ(x) ,
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a vector field V μ(x):

∇ρV μ(x) = ∂ρV μ(x)+ΓμσρVσ (x) ,

a covector field Uμ(x):

∇ρUμ(x) = ∂ρUμ(x)−ΓσμρVσ (x) ,

etc.

3.3.3 Algebraic Properties

Through operations of tensor algebra—linear combination, product, and contrac-
tion—we can form new tensor fields from other tensor fields by application of these
operations at every point to the components of the tensors there. How does the co-
variant derivative interact with these constructions?

3.3.3.1 Linear Combination

Let T μ...ν
ρ ...σ (x) and Sμ...ν

ρ...σ (x) be two tensor fields of type (p,q), a and b two constants
(independent of coordinates). Then the linear combination aT μ...ν

ρ ...σ (x)+bSμ...ν
ρ...σ (x) is

again a tensor fields of type (p,q) and

∇λ
(
aT μ...ν
ρ ...σ (x)+bSμ...ν

ρ...σ (x)
)

= a∇λT μ...ν
ρ ...σ (x)+b∇λSμ...ν

ρ...σ (x) .

Hence, the covariant derivative is a linear operation. The proof is simple if we use
the usual trick to compute the components of all tensors in a special coordinate
system, find that the relations between them behave like a tensor, and hence infer
that it is valid in arbitrary coordinates. Here, the special system is a local inertial
frame, and we can directly use the definition of the covariant derivative. In a local
inertial frame, the covariant derivative reduces to the coordinate derivative, and the
coordinate derivative is linear. Thus the claim follows immediately.

We can also use (3.38) for the proof. We carry this out for two vector fields. The
general proof works analogously.

Thus, let V μ(x) and Uμ(x) be two vector fields. We compute the covariant deriva-
tive of a linear combination of these from (3.38):

∇λ (aV μ(x)+bUμ(x)) = ∂λ (aV μ(x)+bUμ(x))+Γμρλ (aV ρ(x)+bUρ(x))

= a∂λV μ(x)+b∂λUμ(x)+aΓμρλV ρ(x)+bΓμρλUρ(x)

= a∇λV μ(x)+b∇λUμ(x) .

qed.
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3.3.3.2 Tensor Product

Let T μ...ν
ρ ...σ (x) and Sα...β

γ ...δ (x) be two tensor fields of type (p1,q1) and (p2,q2). Their
tensor product satisfies

∇λ
(

T μ...ν
ρ ...σ (x)Sα...β

γ ...δ (x)
)

=
(
∇λT μ...ν

ρ ...σ (x)
)

Sα...β
γ ...δ (x)+T μ...ν

ρ...σ (x)
(
∇λSα...β

γ ...δ (x)
)

.

Hence, the covariant derivative satisfies the Leibniz rule like the coordinate deriva-
tive. Again, the general proof follows from the definition and the fact that partial
coordinate derivatives satisfy the Leibniz rule.

Alternatively, here is a proof for two vector fields V μ(x) and Uμ(x) using (3.38):

∇λ (V μ(x)Uα(x))

= ∂λ (V μ(x)Uα(x))+Γμρλ (V ρ(x)Uα(x))+Γαρλ (V μ(x)Uρ(x))

= (∂λV μ(x))Uα(x)+V μ(x)(∂λUα(x))+ΓμρλV ρ(x)Uα(x)+ΓαρλV μ(x)Uρ(x)

= (∇λV μ(x))Uα(x)+V μ(x)(∇λUα(x)) ,

qed.

3.3.3.3 Contraction

Let W μ
ρσ (x) be a tensor field of type (1,2). We can form a contraction in every point

Uσ (x) = W ρ
ρσ (x). Uσ (x) is a tensor of type (0,1). What is the relationship between

the covariant derivatives of these two tensor fields? We have

∇λW μ
ρσ (x) = ∂λW μ

ρσ (x)+ΓμαλWα
ρσ (x)−ΓαρλW μ

ασ (x)−ΓασλW μ
ρα .

This is a tensor field of type (1,3), and we contract the two indices μ and ρ:

∇λW ρ
ρσ (x) = ∂λW ρ

ρσ (x)+ΓραλWα
ρσ (x)−ΓαρλW ρ

ασ (x)−ΓασλW ρ
ρα

= ∂λUσ (x)−ΓασλUα(x) = ∇λUσ (x) .

In this case, we were able to show that forming the covariant derivative first and
contracting afterwards yields the same result as forming the covariant derivative
of the contraction. This rule—that contraction and covariant derivative commute—
holds in general. However, we must take care to contract the same indices.

3.3.3.4 Composition of Covariant Derivatives

Forming the covariant derivative of a tensor field T (x) of type (p,q) yields a tensor
field of type (p,q + 1). Hence, the covariant derivative can be applied again, and
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the result will be a tensor field of type (p,q + 2). It turns out that the covariant
derivatives do not commute, in contrast to the coordinate derivatives. Instead, we
have the following formula:

∇λ∇κT μ...ν
ρ ...σ (x)−∇κ∇λT μ...ν

ρ ...σ (x)

= RμαλκTα...ν
ρ...σ + . . .+RναλκT μ...α

ρ ...σ −RαρλκT μ...ν
α...σ − . . .−RασλκT μ...ν

ρ...α , (3.39)

where Rμαλκ is the curvature tensor of the affine connection. In particular, two co-
variant derivatives do not commute for smooth tensor fields whenever space–time is
curved.

Equation (3.39) cannot be derived from the direct definition of the covariant
derivative in a local inertial frame. It is not true that ∇̄μ ∇̄ν T̄ (p) = ∂̄μ ∂̄ν T̄ (p), since
we have to know the first derivative in a whole neighborhood of p to compute the
second derivative.

3.3.4 Metric Affine Connections

So far, we worked with a general affine connection, and did not refer to a metric.
In this section we shall consider the important case of a metric affine connection.
We thus let M be an n-manifold with metric gμν(x). The components of the affine
connection are given by the Christoffel symbols (cf. (1.16)):

Γμρσ =
{μ
ρσ
}

.

3.3.4.1 Covariant Derivative of the Metric

Theorem 9 The covariant derivative of the tensor field δρσ , with components the
Kronecker-delta in each point with respect to every coordinate system, is zero:

∇μδ
ρ
σ = 0 (3.40)

for every affine connection on M . For the covariant derivative of the metric affine
connection Γμρσ of gμν(x), we have in addition that

∇ρgμν(x) = 0, ∇ρgμν(x) = 0 (3.41)

Proof All three equations directly follow from the definition of the covariant deriva-
tive, as the components of all three tensors in a local inertial frame have vanishing
derivatives with respect to all coordinates.

A different proof works as follows. Equation (3.38) yields that

∇μδ
ρ
σ = ∂μδ

ρ
σ +Γρλμδ

λ
σ −Γλσμδ

ρ
λ = 0 .
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Similarly,
∇ρgμν(x) = ∂ρgμν −Γλμρgλν −Γλνρgμλ . (3.42)

Identity (2.12) implies that the right-hand side vanishes. Using this result, (3.42)
yields the first equation of (3.41). By covariantly differentiating the identity

gμν(x)gνρ(x) = δρμ

we obtain that
(
∇λgμν(x)

)
gνρ(x)+gμν(x)(∇λgνρ(x)) = ∇λδ

ρ
μ .

Inserting the previously derived equations, we arrive at

gμν(x)(∇λgνρ(x)) = 0 .

As gμν is a regular matrix, the second equation of (3.41) follows immediately, qed.

3.3.4.2 Covariant Divergence

Here we have a closer look at the differential operators appearing in the variation
of the invariant Lagrange functions. Consider a vector field V μ(x). Its covariant
derivative ∇νV μ(x) is a tensor field of type (1,1) and hence can be contracted to
yield the so-called covariant divergence ∇μV μ(x) of V μ(x). This operation maps
each vector field into a scalar field. The meaning of the covariant divergence of a
vector field is simply that of a source for this field. (The total flow of the vector
through the surface of an infinitesimal n-cube is (∇μV μ)

√−g dnx).
The covariant divergence can be expressed in terms of the metric by substituting

into the equation
∇μV μ(x) = ∂μV μ(x)+ΓμαμVα(x) , (3.43)

from the frequently used formula:

Γμαμ =
1√−g
∂
√−g
∂xα

. (3.44)

Hence, we obtain for the covariant divergence

∇μV μ(x) = ∂μV μ(x)+
1√−g
∂
√−g
∂xα

Vα(x)

=
1√−g

(√
−g∂μV μ(x)+(∂μ

√
−g)V μ(x)

)
,

or equivalently

∇μV μ(x) =
1√−g
∂μ
(√

−gV μ(x)
)

. (3.45)
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This formula is better suited to compute the covariant divergence than (3.43).
An important application of the covariant divergence can be deduced from (3.45).

Let uμ be a normalized surface-orthogonal vector field and let xμ be coordinates
adapted to uμ such that, first,

uμ = δ μ0
and second, the hypersurfaces x0 = const are orthogonal to uμ , that is

ds2 = (dx0)2 +gkldxkdxl .

These coordinates exist in a neighborhood of every point. Then,

∇μuμ =
1

√
3g
∂0

√
3g ,

where 3g is the determinant of the 3-metric gkl on the hypersurface x0 = const,
induced by the ambient metric. Thus, the divergence equals the relative growth of
the 3-volume det(gkl)d3x in adapted coordinates.

If we have a tensor field instead of a vector, a similar formula can only be derived
in special cases. For example, consider a field T μν(x) of type (2,0):

∇μT μν(x) = ∂μT μν(x)+ΓμαμTαν(x)+ΓναμT μα(x)

=
1√−g
∂μ
(√

−gT μν(x)
)
+ΓναμT μα(x) .

The last term on the right-hand side vanishes if the tensor field T μν(x) is antisym-
metric, as Γ is symmetric in its lower two indices.

In general, if T μ...ν(x) is a totally antisymmetric tensor field of type (p,0), p ≤ n,
that is

T μ...ρ...σ ...ν(x) = −T μ...σ ...ρ...ν(x)

for each pair of indices ρ and σ , then the covariant divergence can be expressed as

∇μT μ...ν(x) =
1√−g
∂μ
(√

−gT μ...ν(x)
)

(3.46)

in terms of the metric.
The electromagnetic tensor Fμν , for example, is totally antisymmetric. Its covari-

ant form Fμν = gμκgνλFκλ is also antisymmetric and of type (2,0). Hence,

∇μ
(

gμκgνλFκλ
)

=
1√−g
∂μ
(√

−ggμκgνλFκλ
)

.

Up to a constant factor, this is the differential operator in the generalized version of
the Maxwell equations (3.13). We can rewrite this equation as follows:

∇μFμν = 0 . (3.47)
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Note that this is equivalent to the equation

∇μFμν = 0 .

where Fμν = gνκFμκ . This is due to the fact that the metric is covariantly constant,
(3.41). However, only (3.47) can be written in the form (3.46).

3.3.4.3 Covariant Laplacean

Let T μ...ν
ρ ...σ (x) be an arbitrary tensor field of type (p,q). Its double covariant derivative

is a tensor field of type (p,q + 2). Then we can form the following tensor field of
type (p,q):

gκλ∇κ∇λT μ...ν
ρ ...σ (x) = ΔT μ...ν

ρ...σ (x) .

The corresponding differential operator is called covariant Laplacean.
Example: A scalar field Φ(x). Due to (3.41), we have

ΔΦ= gκλ∇κ∇λΦ(x) = ∇κ
(

gκλ∇λΦ(x)
)

.

The expression in parentheses is a vector field, and thus the right-hand side has the
form of a covariant divergence. Therefore, (3.45) implies

ΔΦ(x) =
1√−g
∂κ
(√

−ggκλ ∂λΦ(x)
)

. (3.48)

This is the differential operator which appears in the generalized Klein–Gordon
equation (3.36). It is very useful and frequently used.

3.4 The Stress-Energy Tensor

3.4.1 Definition

In field theory on Minkowski space–time, the so-called canonical stress-energy ten-
sor is defined as a quantity Θμν comprised of four Noether currents. These currents
are connected to the invariance of the action with respect to the four Poincaré trans-
lations but they are not uniquely defined [4]. Only integrals thereof on Cauchy
hypersurfaces are well defined. These integrals play the role of total energy and
momentum. The stress-energy tensor describes for example how energy and mo-
mentum of a field are distributed in space–time. Such a distribution can only make
physical sense in general if there is a procedure to measure it. The theory of gravity
can supply such a procedure, since energy density is a source of gravity. In principle,
it is thus possible to measure the energy distribution in space–time by measuring the
resulting gravitational field.
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For a field model including gravity, the action has two parts:

S = SG +SM ,

where SG is the action of gravity and SM is the action of the other fields in the model.
By variation with respect to the metric, we obtain

δSG

δgμν(x)
= − δSM

δgμν(x)
.

The left-hand side yields the equations of motion for the metric, and therefore the
right-hand side is the corresponding source term. The stress-energy tensor is some-
how related to this right-hand side. From the example of electrodynamics, we are
motivated to postulate

T μν(x) = − 2√−g
δSM

δgμν(x)
. (3.49)

The factor (
√−g)−1 transforms the variation into a tensor, as we will see later. The

factor −2 is a convention determining the coefficient of the action of matter.
The variational derivative on the right-hand side of (3.49) is defined as follows.

We split the field ψa(x) in the variation formula (3.32) into two parts, ψa(x) =
(gμν(x),φA(x)), and substitute for the variations:

δxμ = 0, δφA(x) = 0 .

Here δgμν(x) is compactly supported in the (open) domain of integration. Then
δ∗ = δ , and the variation of the action becomes

δS =
∫

d4x W μν(x)δgμν(x) .

The coefficients W μν(x) are not yet determined, as the metric is symmetric in the
indices μ and ν . It is possible to add an arbitrary antisymmetric tensor to W μν(x).
We remove this freedom by requiring that W μν be symmetric in μ and ν . With these
conventions, the stress-energy tensor (3.49) becomes well defined, where

δSM

δgμν(x)
:= W μν(x) .

From the variation formula (3.32), we infer

W μν(x) =
∂LM

∂gμν(x)
− ∂
∂xρ

∂LM

∂gμν ,ρ(x)
. (3.50)

Note that we defined only the stress-energy tensor for matter in this way—the
method does not work for gravity. For instance, the variation of the total action
with respect to gμν(x) vanishes, if the equations of motion are satisfied. Hence the
method does not produce a quantity like a stress-energy tensor for the whole system,
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including gravity. Up to now no reasonable candidate for the stress-energy tensor of
gravity has been defined. This is most likely related to the fact that such a tensor
would have to determine the energy of gravity contained in an infinitesimal volume.
On the other hand, the equivalence principle implies that a gravitational field in such
a volume can be transformed away by an appropriate coordinate change.

3.4.2 Properties

The definition of the stress-energy tensor implies immediately that

1. T μν(x) is symmetric in the indices μ and ν ,
and furthermore,

2. T μν(x) is a tensor field of type (2,0).

Proof Equation (3.49) implies

δSM = −1
2

∫
d4x

√
−gT μν(x)δgμν(x) .

δSM is a scalar for each variation δgμν(x). It follows that we also have

δSM = −1
2

∫
d4x′

√
−g′T ′μν(x′)δg′μν(x

′) ,

where x′μ are different coordinates in the domain of integration. In the second inte-
gral, we substitute x′μ = x′μ(x):

δSM = −1
2

∫
d4x

∣∣∣∣
∂ (x′0, . . . ,x′3)
∂ (x0, . . . ,x3)

∣∣∣∣
√
−g′(x′(x))T ′μν(x′(x))Xρμ ′X

σ
ν ′δgρσ (x)

= −1
2

∫
d4x

√
−g(x)

(
T ′μν(x′(x))Xρμ ′X

σ
ν ′
)
δgρσ (x) .

Here we used (1.14) to transform the determinant of g. It follows that
∫

d4x
√

−g(x)
(

T ′μν(x′(x))Xρμ ′X
σ
ν ′ −T ρσ (x)

)
δgρσ (x) = 0

for all δgμν(x). Hence, the coefficient of δgμν(x) must be zero, and we obtain

T ′μν(x′(x))Xρμ ′X
σ
ν ′ = T ρσ (x)

qed.

The following theorem states the most important property of T μν(x).

Theorem 10 If SM is a scalar and the equations of motion are satisfied for the mat-
ter fields,
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∂LM

∂ϕA(x)
− ∂
∂xρ

∂LM

∂ϕA
,ρ(x)

= 0, (3.51)

then
∇μT μν(x) = 0. (3.52)

Equation (3.52) is called divergence formula for stress-energy tensor.

Proof The coordinate invariance of SM implies that the variation δSM with respect
to an infinitesimal coordinate transformation (3.24) vanishes. On the other hand,
this variation can be computed by the variation formula (3.32). We demand that
the variation δxμ(x) be compactly supported in the domain of integration V for the
action. The corresponding variation of the remaining fields can be computed from
the vector field δxμ(x). For example, for gμν(x) we get

g′μν(x
′) = Xρμ ′X

σ
ν ′gρσ (x) ,

where
Xρμ ′ = δ

ρ
μ −∂μδxρ(x) .

Hence, we have

δgμν(x) = −gαν(x)∂μδxα(x)−gμα(x)∂νδxα(x) ,

and the corresponding form-variation δ∗gμν is (cf.(3.30)):

δ∗gμν(x) = −gαν(x)∂μδxα(x)−gμα(x)∂νδxα(x)−∂αgμν(x)δxα(x) .

The right-hand side can be recast to yield the following important formula (exer-
cise):

δ∗gμν(x) = −∇μδxν −∇νδxμ , (3.53)

where δxμ = gμνδxν .

The variations δϕA(x) and δ∗ϕA(x) are also non-trivial, as the fields ϕA(x) be-
have non-trivially under a change of coordinates. However, the explicit formula for
these variations are not needed for the proof.

The variation formula (3.32) then implies

δSM =
∫

V
d4x

[
∂
∂xμ

(. . .)μ +

(
∂LM(x)
∂ϕA(x)

− ∂
∂xμ

∂LM(x)
∂ϕA

,μ(x)

)

δ∗ϕA(x)

+
(
∂LM(x)
∂gρσ (x)

− ∂
∂xμ

∂LM(x)
∂gρσ ,μ(x)

)
δ∗gρσ (x)

]
.

The total divergence vanishes since δxμ(x) has compact support and the second
term in parenthesis is zero due to (3.51). We substitute (3.50) and (3.53) into the
remainder:
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δSM = 1/2
∫

V
d4x

√
−gT μν(x)

(
∇μδxν(x)+∇νδxμ(x)

)
.

By symmetry of the stress-energy tensor, we can omit the factor 1/2 and the last
term in parentheses. The rest can be written as follows:

δSM =
∫

V
d4x

√
−g∇μ (T μνδxν)−

∫

V
d4x

√
−g

(
∇μT μν

)
δxν

=
∫

V
d4x ∂μ

(√
−gT μνδxν

)
−
∫

V
d4x

(√
−ggνρ∇μT μν

)
δxρ .

The first term vanishes, and the second only vanishes for all δxρ if
√−ggνρ∇μ

T μν = 0, which is equivalent to (3.52), qed.

3.4.3 Interpretation of the Divergence Formula

Let p be a point in space–time and {xμ} a coordinate system which is geodesic at
p, that is Γμρσ (p) = 0, and satisfies

gμν(p) = ημν .

Furthermore, we set xμ(p) = 0. In these special coordinates (3.52) at p becomes

∂μT μν(p) = 0 .

Multiplying this equation with the invariant 4-volume element d4x and expanding
the sum yields

∂μT μν(p)d4x =∑
μ

(
∂μT μν(0)dxμ

)
d3
μx,

where
d3
μx =

(
dx1dx2dx3,dx0dx2dx3,dx0dx1dx3,dx0dx1dx2)

are the area elements of the four coordinate hyperplanes. These yield the correct
measure of the 3-surfaces in the corresponding units (cm3 or cm2s, if c �= 1) and the
surface d3

μ is perpendicular to the μ-axis.
The expression in parentheses can be interpreted as the difference of the field

T μν(x) at the points p and pμ , where pμ are the vertices adjacent to p in the in-
finitesimal coordinate cube (Fig. 3.1):

xμ(p0) =
(
dx0,0,0,0

)
,xμ(p1) =

(
0,dx1,0,0

)
,

xμ(p2) =
(
0,0,dx2,0

)
,xμ(p3) =

(
0,0,0,dx3

)
,

whence

∑
μ

(
∂μT μν(0)dxμ

)
d3
μx =∑

μ

(
T μν(pμ)−T μν(p)

)
d3
μx .
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x2

p p1 x1

p0

x0

p2

Fig. 3.1 Coordinate cube in a local inertial system

Each of the eight terms in the sum evidently equals the flow of current density (that
is the current) of the ν-component of the 4-momentum through one face of the co-
ordinate cube. As the sum has to vanish, the ν-component of the 4-momentum is
locally conserved. This is the interpretation of the divergence (3.52). This corre-
sponds to the result we inferred for particles

∇pμ

ds
= 0 .

In general, this conservation law cannot be integrated on a finite domain of inte-
gration so that a global conservation law follows as in Minkowski space. There we
have a global, geodesic coordinate system in which (3.52) becomes

∂μT μν(x) = 0 .

Integrating this equation over the volume between two hypersurfaces x0 = t1 and
x0 = t2, we find, using Gauss’ theorem, that the total momentum (respectively en-
ergy) of the field is conserved:

Pν =
∫

d3
0xT 0ν = const.

On the other hand, in curved space–time, there is no such global geodesic system, we
have to use a new geodesic system for each point, and the coordinate cubes do not
fit together. If we try to work in a general coordinate system, then the Γ-corrections
to ∂μT μν(x) in (3.52) do not vanish, and the volume integral cannot be transformed
to a surface integral.



120 3 Field Dynamics

The fact that total energy and momentum are only conserved (or even well de-
fined) in flat space–time can be understood as follows. A system of matter in a grav-
itational field is not isolated, it can exchange energy and momentum with the gravi-
tational field. Equation (3.52) shows that this exchange happens in a non-local way.
That is, the gravitational field does not have an stress-energy tensor such that the
sum of this tensor and T μν—a “total” stress-energy tensor—is locally conserved, as
this is the case for two systems of matter in Minkowski space–time [5]. The total en-
ergy of all fields including gravity can be defined in asymptotically flat space-times
as the monopole in the multipole expansion of gravitational field. An example is the
Eddington–Robertson expansion for rotationally symmetric space-times. For gen-
eral stationary fields in weak-field approximation, this will be done in Sect. 4.4.5,
(4.66). A more general theory can be found in [6].

3.4.4 Ideal Fluids

Besides electrodynamics, relativistic hydrodynamics is another classical field the-
ory which plays an important role in astrophysics. There are many different fluids,
ranging from the cold dust of the galaxies to the hot plasma in the solar corona or
accretion discs (magneto-hydrodynamics). The fluid approximation is sufficient in
many cases, in particular, for all models in these Notes. More serious astrophysics
[7, 8], however, often has to consider more sophisticated forms of gas dynamics,
such as relativistic kinetic theory [9].

The equations of motion for fluids in special relativity is the divergence equation
∂νT μν = 0, valid in any inertial frame. The equivalence principle then leads to the
postulate

∇νT μν = 0, (3.54)

valid in all curved space–times and for all coordinates. Here T μν must be the stress-
energy tensor of the whole system. The kind of matter considered is determined by
the form of T μν .

Here, we restrict our attention to the most basic fluid, namely the ideal fluid
(ideal = no viscosity). We proceed by giving a precise definition.

The ideal fluid is characterized by two properties: in every point, there is a rest
frame for the fluid (which is unique up to rotation of the spatial axes), and the fluid
looks isotropic in this rest frame. A rest frame of a continuous system of matter
with stress-energy tensor T μν at p is a local inertial frame x̄μ at p, such that the
components of the energy current T 0μ have the form:

T̄ 0μ(p) = (ρ,0,0,0) , (3.55)

in these coordinates. Then ūμ := (1,0,0,0) is called the 4-velocity of the ideal fluid
at p. The real number ρ is called mass density (or energy density or simply “den-
sity”) of the fluid. To be isotropic means that the tensor T̄ μν is invariant with respect
to rotations of the three spatial axes, that is transformations of the form:
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x̄′0 = x̄0 , x̄′k =∑
l

Olkx̄l , (3.56)

where Olk is an orthogonal matrix. Thus {x̄′μ} is also a local inertial frame and a
rest frame at p, and (3.55) is not affected by the transformation (3.56).

The definition of an ideal fluid implies that the stress-energy tensor T̄ μν and the
4-velocity ūμ have components (with respect to a rest frame) of the form:

T̄ μν =

⎛

⎜⎜
⎝

ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞

⎟⎟
⎠ , ūμ =

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ . (3.57)

The number p is called pressure of the fluid (thus isotropy is just Pascal’s law). In
every point we have a rest frame, whence density ρ , pressure p, and 4-velocity uμ

are functions on the space-time M. We assume that these functions are of class C∞.
Therefore, ρ(x) and p(x) are scalar fields and uμ(x) is a vector field on M with
norm 1.

For each point, there is a different rest frame, but there are no coordinates in
which T μν(x) has the form (3.57) globally. For some computations, it is important
to have an expression for the stress-energy tensor in terms of ρ , p, and uμ , which is
valid in an arbitrary coordinate system {xμ}. To find such an expression, note that
in a rest frame we have that

ḡμν =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ , ūμ ūν =

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ ,

whence
T̄ μν = ρ ūμ ūν − p(ḡμν − ūμ ūν) .

The quantities on both sides of this equation are tensors of type (2,0), and the equa-
tion tells us that the components of these tensors agree in one coordinate system.
As they transform in the same way, they have to agree in every coordinate system.
Thus we find the desired relation:

T μν(x) = (ρ(x)+ p(x))uμ(x)uν(x)− p(x)gμν(x) . (3.58)

Let us investigate how the state of a fluid at a point can be described, and how
equations of motion for the fluid can be derived. The pressure and the density are
not independent of each other in actual systems. They are related by the so-called
equation of state, for example p = p(ρ). The state of an ideal fluid at a point x is
determined if we fix ρ(x), u1(x), u2(x), and u3(x). The pressure is then given by the
equation of state, and u0(x) can be computed from the normalization for uμ (a time-
like unit vector). The evolution of the functions ρ(x), u1(x), u2(x), and u3(x) from
their initial values is given by (3.54). We want to rewrite the divergence equation as
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a system of differential equations for the fields ρ , p, and uμ . Substitute (3.58) into
the left-hand side of (3.52). This yields

∇μ [(ρ+ p)uμuν − pgμν ]

=
(
∂μρ+∂μ p

)
uμuν +(ρ+ p)uν∇μuμ +(ρ+ p)uμ∇μuν −gμν∂μ p

=
[
uμ∂μρ+(ρ+ p)∇μuμ

]
uν +

[
(ρ+ p)uμ∇μuν − (gμν −uμuν)∂μ p

]
.

The second term is a vector orthogonal to uμ , which can be seen as follows. The
tensor Pμν = gμν −uμuν satisfies the equations

Pμν uν = 0, Pμν sν = sμ

for all vectors sμ orthogonal to uμ , that is uνsν = 0. Therefore, Pμν is a projec-
tion operator onto the directions that are spatial with respect to an observer with
4-velocity uμ . In addition, uμ∇μuν is orthogonal to uν (exercise). Thus, the conclu-
sion uν∇μT μν = 0 of the divergence equation takes the form

uμ∂μρ+(ρ+ p)∇μuμ = 0 . (3.59)

If we substitute this back into the divergence equation, all that remains is

(ρ+ p)uμ∇μuν = (gμν −uμuν)∂μ p . (3.60)

The first equation says that the time derivative of the energy density is proportional
to the divergence of the integral curves of the vector field uμ plus the work done by
the pressure. This equation is called energy equation. The second equation has only
three independent components. On the left-hand side, there is the 4-acceleration of
the integral curves (streamline of the fluid) multiplied by the mass density plus a
relativistic correction puμ∇μuν . The right-hand side is the gradient of the pressure
projected to the spatial directions. Thus (3.60) is the relativistic version of Euler’s
equation [10]. It describes the movement of an ideal fluid (no viscosity) in arbitrary
gravitational fields.

3.5 Exercises

1. Let Vμ(x) and Wμν(x) be covariant tensor fields, with Wμν(x) = −Wνμ(x) for
all μ ,ν ,x. Show that the following equations, valid in any coordinate sys-
tem, define tensor fields and that these tensor fields are anti-symmetric in all
indices.

Tμν := ∂μVν −∂νVμ ,

Uμνρ := ∂μWνρ +∂νWρμ +∂ρWμν .
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2. Let {xμ} be coordinates, gμν(x) the components of the metric with respect to
{xμ}, g(x) := det(gμν(x)) and d4x the 4-volume element. Show that the expres-
sion

√−gd4 x is invariant.
3. Show that

d
√
−g = −(1/2)

√
−ggμνdgμν

= (1/2)
√
−ggμνdgμν .

Hint: Use the sub-determinant formula to express the inverse of a matrix in
terms of the derivative of the determinant with respect to a matrix element.

4. Use the variation formula to compute the variation of the action

S = − 1
16π

∫
d4xFαβFαβ

for the Maxwell field Aμ(x) in Minkowski space-time with respect to infinites-
imal Poincaré transformations. Assume that the field equations

∂L

∂Aμ
− d

dxρ
∂L

∂Aμ,ρ

are satisfied. Hint: first show that

∂ (FαβFαβ )
∂ (∂μAν)

= 4Fμν .

5. Prove the following three equations:

(a) ∇λ∇κ ϕ(x) = ∇κ∇λ ϕ(x) for all scalar fields ϕ(x).
(b) ∇λ∇κV μ(x)−∇κ∇λ V μ(x) = Rμνλκ(x)V ν(x) for all vector fields V μ(x).

Use the following equations:

∇λV μ = ∂λV μ +Γμρλ V ρ ,

Rμνλκ = ∂λΓ
μ
νκ −∂κΓμνλ +ΓμλρΓ

ρ
νκ −ΓμκρΓρνλ .

(c) ∇λ∇κUμ(x)−∇κ∇λUμ(x)=−RνμλκUν for all covector fields Uμ(x). Show
that this follows directly from the two preceding results.

6. Prove the formula
Γμνμ = ∂ν log

√
|g| .

7. Let ξ μ(x) be a Killing vector field. Show that in this case

∇μξν +∇νξμ = 0,

where ξμ = gμνξ ν (and the affine connection is metric).
8. Determine the stress-energy tensor of the Klein–Gordon scalar field ϕ(t,x) with

action
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Sϕ = κ
∫

d4x
√
−g

(
gμν∂μϕ∂νϕ−m2ϕ2) .

Which is the sign for κ that yields non-negative energy density?
9. Let ξ μ(x) be a Killing vector field. Show that in this case the relation

∇μ(T μνξν) = 0

follows from the fact that T μν has vanishing divergence.
10. Let uμ(x) be a vector field with constant norm: gμνuμuν = const for all x. Prove

that in this case uρ∇ρuμ is orthogonal to uμ .
11. Let u(x) be a function with light-like gradient: gμν∂μu∂νu = 0, where uμ =

gμν∂νu. Show that uρ∇ρuμ = 0. This implies that the integral curves of uμ are
light-like autoparallels.
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Chapter 4
Dynamics of Gravity

So far, we considered several matter systems (particles, fields) in a prescribed grav-
itational field. The matter was influenced by the gravitational field—it was mini-
mally coupled to gravity—but its own influence on the gravitational field was not
discussed. But we know that the matter of the sun and the planets generates a mea-
surable gravitational field. In Newton’s theory, this effect is described by the Poisson
equation. This section is devoted to establish the corresponding relativistic equations
for gravity and to study some of their basic properties.

Finally, after long but necessary preliminary work, we arrive at the heart of
Einstein’s theory. As the Maxwell equations are the core of Maxwell’s theory, so are
the so-called Einstein equations central to general relativity. Generations of physi-
cists have studied these equations and have understood them now to some extent.
The reason for the slow progress is that these equations are difficult, non-linear, and
rather different from other field equations in theoretical physics. The non-linearity
can be treated as a perturbation in only few cases. The numerical treatment is not
easy [1], either. We devote the rest of these Notes to study several important solu-
tions of these equations.

4.1 The Action

The Lagrange function of gravity cannot be “derived”, only postulated. To select
reasonable candidates, we make simplifying and analogy-motivated assumptions.

First, we demand that the Lagrange function implies differential equations of
second order for the metric. This is the common choice which proved to be fruitful
for all other fields and dynamical systems. Then

L(x) = F0
(
gμν(x),gμν ,ρ(x)

)
. (4.1)

Hájı́ček, P.: Dynamics of Gravity. Lect. Notes Phys. 750, 125–157 (2008)
DOI 10.1007/978-3-540-78659-7 4 c© Springer-Verlag Berlin Heidelberg 2008
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Thus F0 is a function of 10 + 40 = 50 arguments. Second, we require that

√
−gF

(
gμν(x),gμν ,ρ(x),gμν ,ρσ (x)

)

=
√
−gF0

(
gμν(x),gμν ,ρ(x)

)
+
∂
∂xσ

√
−gFσ

(
gμν(x),gμν ,ρ(x)

)
, (4.2)

where Fσ are functions of gμν(x) and gμν ,ρ(x), and F(x) is a scalar field. That is, the
value of F at a point p has to be independent of the choice of coordinates in which
the components gμν(p) of the metric and its derivatives gμν ,ρ(p) and gμν ,ρσ (p) are
computed. That is

F
(

g′μν(x
′),g′μν ,ρ(x

′),g′μν ,ρσ (x′)
)

= F
(
gμν(x),gμν ,ρ(x),gμν ,ρσ (x)

)

(this is the same function on both sides—only its arguments are different) at each
point x. Such functions are called invariant. This condition means that if the 10
functions gμν(x) form a solution of the equation, then so do the functions g′μν(x

′),
where g′μν(x

′) arise from gμν(x) by a coordinate transformation. Dynamical field
models with this property are called generally covariant. Note that the function F
in (4.2) is a linear function of the variables gμν ,ρσ (x):

∂
∂xσ

Fσ
(
gμν(x),gμν ,ρ(x)

)
=

∂Fσ

∂gμν(x)
gμν ,σ (x)+

∂Fσ

∂gμν ,ρ(x)
gμν ,ρσ (x) .

About invariant functions, the following is well known:

Theorem 11 Let M be a n-manifold, gμν(x) a metric on M , and F an invariant
function depending on the following arguments:

1. F(gμν(x),gμν ,ρ(x)),
2. F(gμν(x),gμν ,ρ(x),gμν ,ρσ (x)).

Then F must be of the following form:

1. F = const,
2. F = F̄(gμν(x),R

μ
νρσ (x)).

Thus, F can only be non-trivial in the second case and can distinguish between
different metrics. Furthermore, F can only depend on the arguments gμν ,ρ(x) and
gμν ,ρσ (x) via the curvature tensor at x. Part 1 of the theorem is evident. At every
fixed point each metric can be changed to ημν by a coordinate transformation, and
simultaneously all first derivatives can be made to vanish. Then

F
(
gμν(x),gμν ,ρ(x)

)
= F(ημν ,0) = const .

Part 2 is more difficult. We had to show that in a specific coordinate system (the so-
called normal coordinates [2]) all non-zero first and second derivatives of the metric
could be computed from the curvature tensor [2]. Then, it is easy and we need not
go into detail.
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Hence we must assume the form (4.2). The total sum F has to be invariant but
not necessarily F0 alone. Then F depends linearly on the variables gμν ,ρσ (x). The
following theorem describes invariant functions of this kind:

Theorem 12 All invariant functions F of type 2, depending linearly on gμν ,ρσ (x)
have the form

F = aR+b,

where a and b are constants and R is the scalar curvature of the metric gμν(x).

For each metric affine connection, the scalar curvature R is defined by

R := gμνRμν ,

where Rμν is the so-called Ricci tensor

Rμν := Rρμρν .

Thus, the constants a and b are the only freedom we have at this stage. For his-
torical reasons, we express these constants in terms of two others, G and Λ:

a = − 1
16πG

, b = − Λ
8πG

.

As it turns out, G agrees with Newton’s constant, whereas Λ is the so-called cos-
mological constant. We prove this claim later and leave G and Λ undetermined for
now. The action SG of gravity is thus of the following form:

SG = − 1
16πG

∫
d4x

√
−g(R+2Λ) . (4.3)

4.2 The Einstein Equations

The field equations arise from variation of the action (4.3) with respect to the metric
gμν(x). Let the variation δgμν(x) be C∞ with support in a compact region. We write
the variation in the following form:

δSG =
1

16πG

∫
d4x

√
−gAμν(x)δgμν(x) , (4.4)

where Aμν(x) is a tensor field. In the presence of matter, the variation of the total
action with respect to gμν(x) has to be computed and set to zero:

δSG +δSM = 0 .

In combination with (4.4) and (3.49) this yields

Aμν(x) = 8πGT μν(x) .



128 4 Dynamics of Gravity

The tensor field Aμν(x) has to be computed directly. The variation formula (3.32)
does not help us here, as it only applies to Lagrange functions depending on at most
first derivatives of the fields, whereas SG also contains second derivatives. Compute
the variation:

δSG = − 1
16πG

∫
d4xδ

[√
−g

(
gμνRμν +2Λ

)]

= − 1
16πG

∫
d4x

√
−g

(
R(μν) −1/2Rgμν −Λgμν

)
δgμν

− 1
16πG

∫
d4x

√
−ggμνδRμν . (4.5)

We have
δgμν = −gμκgμλ δgκλ . (4.6)

Substituting this for δgμν(x), we obtain

δSG =
1

16πG

∫
d4x

√
−g

(
R(μν) −1/2Rgμν −Λgμν

)
δgμν

− 1
16πG

∫
d4x

√
−ggμνδRμν , (4.7)

where R(μν) denotes the symmetric part of the Ricci tensor. (Later, we show that the
Ricci tensor is symmetric.)

We compute the variation of the Ricci tensor as follows. We have

Rμν = Rρμρν = ∂ρΓ
ρ
μν −∂νΓρμρ +ΓρκρΓκμν −Γ

ρ
κνΓκμρ ,

thus,

δRμν = ∂ρδΓ
ρ
μν −∂νδΓρμρ +δΓρκρΓκμν +ΓρκρδΓκμν −δΓ

ρ
κνΓκμρ −Γ

ρ
κνδΓκμρ .

But what is δΓρμν? This is the difference of two affine connections Γρμν [gκλ ] and
Γρμν [gκλ + δgκλ ] in the same coordinate system. Then δΓρμν transforms as a ten-
sor of type (1,2), since the non-homogeneous term in transformation law for Γρμν
(cf. (1.9)) is independent of Γρμν and these terms cancel in the difference. Thus the
covariant derivative of δΓρμν makes sense, and we observe that

δRμν = ∇ρδΓ
ρ
μν −∇νδΓρμρ .

Thus we arrive at
∫

d4x
√
−ggμνδRμν =

∫
d4x

√
−ggμν

(
∇ρδΓ

ρ
μν −∇νδΓρμρ

)

=
∫

d4x
√
−g

[
∇ρ

(
gμνδΓρμν

)
−∇ν

(
gμνδΓρμρ

)]

=
∫

d4x
√
−g∇ρ

(
gμνδΓρμν −gμρδΓνμν

)
.
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The expression in parentheses,

δV ρ = gμνδΓρμν −gμρδΓνμν ,

is a vector field. Equation (3.45) then yields:
∫

d4x
√
−ggμνδRμν =

∫ (√
−gδV ρ

)
.

Hence the last term in (4.7), an integral of a total divergence, does not affect the
field equations. We simply obtain

Aμν = R(μν) −1/2Rgμν −Λgμν = Gμν −Λgμν ,

where R(μν) is the symmetric part of the Ricci tensor,

R(μν) = 1/2(Rμν +Rνμ)

and Gμν is the so-called Einstein tensor,

Gμν = R(μν) −1/2Rgμν .

This results in the field equations for gravity with matter:

Gμν −Λgμν = 8πGT μν . (4.8)

They are called the Einstein equations.

4.2.1 Properties of the Curvature Tensor

We can make two very general remarks about these equations. To this end, we need
some properties of the curvature tensor.

Theorem 13 The curvature tensor and Ricci tensor of a metric affine connection
have the following symmetries:

Rμνρσ = −Rνμρσ , Rμνρσ = Rρσμν , (4.9)

Rμν = Rνμ . (4.10)

Proof At first, we need the following lemma:

Lemma 1 The curvature of a metric affine connection satisfies

Rμνρσ = 1/2
(
∂νρgμσ +∂μσgνρ −∂νσgμρ −∂μρgνσ

)
+ΔRμνρσ , (4.11)
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where all terms in ΔRμνρσ are quadratic in the first derivatives of the metric, ∂νgμσ ,
and do not contain second derivatives.

(Proof: exercise). Now, choose a point p in space–time and a geodesic coordinate
system {xμ} at p. The result of Exercise 2 of Chap. 2, then yields that ∂μgνρ = 0.
Thus (4.11) implies for the components of the curvature tensor with respect to {xμ}
that

Rμνρσ (p) = 1/2
(
∂νρgμσ +∂μσgνρ −∂νσgμρ −∂μρgνσ

)∣∣
p .

Hence, (4.9) holds at p and for the components with respect to {xμ}. But p is arbi-
trary, and symmetry properties of tensors are invariant—if they hold in one coordi-
nate system, then they hold in each. For the Ricci tensor we have

Rμν = gρσRμρνσ . (4.12)

Using the second equation (4.9) and the symmetry of the metric, we obtain:

gρσRμρνσ = gρσRνσμρ = gσρRνσμρ ,

and, by (4.12), this equals Rνμ , qed.
Due to (4.10) we can subsequently omit the parentheses around the indices of the

Ricci tensor. Further important properties of a general curvature tensor (not neces-
sarily of a metric affine connection) are stated in the following theorem.

Theorem 14 The curvature tensor satisfies the following identities:

Rμνρσ +Rμρσν +Rμσνρ = 0 , (4.13)

∇τR
μ
νρσ +∇ρRμνστ +∇σRμντρ = 0 . (4.14)

These are called the first and second Bianchi identities. However, (4.13) only
holds if

Γμρσ = Γμσρ . (4.15)

Proof Again, choose a point p and a geodesic coordinate system {xμ} at p. Then

Rμνρσ (p) = ∂ρΓμνσ (p)−∂σΓμνρ(p) .

(Γμνσ (p) vanishes, but not its derivative ∂τΓμνσ (p)). Substituting this relation into the
left-hand side of (4.13), equation (4.15) implies that (4.13) holds. As ∇τ = ∂τ at p
and the fact that the rest in Rμνρσ is quadratic in Γ, the above relation also implies that

∇τR
μ
νρσ |p = ∂τρΓ

μ
νσ (p)−∂τσΓμνρ(p) .

The left-hand side of (4.14) then vanishes due to the symmetry of the expression
∂τρΓ

μ
νσ (p) in τ and ρ , qed.

The symmetries of the curvature tensor and its covariant derivative we just proved
are not independent. For example, the first equation of (4.9) clearly follows from the
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second equation of (4.9) and the antisymmetry in the last two indices. It can also be
shown that the second equation of (4.9) follows from the antisymmetry in the first
and second pair of indices together with the first Bianchi identity.

The second Bianchi identity implies an important property of the Einstein equa-
tions. Contracting equation (4.14) in ρ and μ yields

∇τRνσ −∇σRντ +∇μRμνστ = 0 . (4.16)

Contracting again in τ and ν implies

2∇τRτσ −∇σR = 0 . (4.17)

This equation can be written in the form

∇τ (Rτσ −1/2δ τσR) = 0 ,

which means
∇μGμν = 0 . (4.18)

Thus the Einstein tensor is divergence free, regardless of the metric from which it
is calculated, as (4.18) is an identity. That is, the Einstein equations imply that the
stress-energy tensor T μν is divergence free without reference to the equations of
motion of the matter.

4.3 General Covariance of the Einstein Equations

The form of the Einstein equations can symbolically be represented as:

g··∂··g·· +g··g··∂·g··∂·g·· −Λg·· = 8πGT·· .

There are three types of terms on the left-hand side, and all have fixed numbers like
1/2, −1, Λ, etc., as coefficients. That is, if the components gμν(x) of the metric are
known in any coordinate system, the left-hand side can be computed from them.
Two facts are remarkable:

1. The equations are formed in the same way, regardless of the chosen coordinate
system xμ .

2. The left-hand sides (there are 10 independent expression) computed in coordi-
nates x′μ equal certain linear combinations of the left-hand sides computed in xμ

(it is indeed a tensor transformation!).

Precisely this property is called general covariance.
The general covariance of the field equations has an unexpected consequence.

This troubled Einstein so much that he conjectured that the field equations for the
metric must not be generally covariant [3]. We want to understand this now. To
this end, we need some more mathematics. In Sect. 2.6.2 we already introduced the
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notion of a diffeo and explained the action ϕ∗ of a diffeo ϕ on tensor fields. We have
to elaborate on this.

Let M be a n-manifold. Consider two diffeos from M into itself, ϕ : M �→ M .
They are defined on the whole manifold, are onto and also invertible. Two diffeos
ϕ1 and ϕ2 can thus be composed

ϕ := ϕ2 ◦ϕ1,

and the composition is again a diffeo. The set of all diffeos is a group with the
composition as multiplication. Indeed, the composition of two maps is always asso-
ciative, the identity map id is a diffeo, and the inverse, ϕ−1, of ϕ has the property
that ϕ−1 ◦ϕ = id. This group is called DiffM .

DiffM is a large group as its dimension is infinite [4]. Without proof we mention
two interesting properties, demonstrating its size. Let (p1, · · · , pm) and (q1, · · · ,qm)
be two M-tuples of points in M . Can we find ϕ ∈ DiffM , so that

ϕ(pi) = qi ∀i = 1, · · · ,m?

The answer is yes for almost all m-tuples. In particular, DiffM can map any point
in M to any other point in M .

The second property is the following. Let U ⊂ M be an arbitrary neighborhood
in M (a “hole”). There exists ϕ ∈ DiffM such that

ϕ|M \U = id

and
ϕ|U �= id .

Then it is clear that ϕ(U) = U . If there was p ∈U such that ϕ(p) �∈U , then ϕ−1 is
non-trivial at ϕ(p), but on the other hand the definition ϕ implies that it has to be
trivial (id), a contradiction.

Let us return to the Einstein equations. We will show the following:

Theorem 15 Let gμν(x) be a solution of Einstein’s equations with source Tμν(x) on
a manifold M and let ϕ ∈ DiffM be an arbitrary diffeo. Then (ϕ∗g)μν(x) is also a
solution for the source (ϕ∗T )μν(x).

The proof uses the general covariance. We know that the components for g and
T in coordinates xμ satisfy the equations around a point p. At ϕ(p) we choose
the coordinate system which is the ϕ-image of xμ . In this system the components
(ϕ∗g)μν(x) and (ϕ∗T )μν(x) have exactly the same form as those of g and T with
respect to xμ and have to solve an equation of the same form.

We actually proved that DiffM is a symmetry group of Einstein’s equations,
meaning that (ϕ∗g) is a solution whenever g is. This gives a recipe to construct a
relatively large number of new solutions from a given one. Indeed, (ϕ∗g) is a tensor
field on M which is different from g unless ϕ is an isometry of g, which is rarely
the case.
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This appears to have an inconvenient consequence. The Einstein equations seem
to have too many solutions. Consider for example an asymptotically flat space–time
with a bounded central source of mass μ and radius R. If we have this situation in
Newtonian theory, then this source and boundary condition allows only one solution
for the Poisson equation, which seems plausible for physical reasons.

Consider the same situation in general relativity, and assume that gμν(x) is a
solution of the Einstein equations on M corresponding to the above situation. Fix
a small neighborhood U ⊂ M outside the source. Then there exists ϕ ∈ DiffM
which does not change the source or the asymptotic region, but changes g non-
trivially in U! It seems that the Einstein equations allow many different solutions
for a physically unique situation. This roughly describes Einstein’s famous hole
argument [3].

The only way out of this difficulty is to assume that two metrics g and ϕ∗g for
arbitrary ϕ ∈ DiffM cannot be distinguished by any measurable properties. That is,
DiffM is a gauge group of general relativity.

At first this is difficult to believe. The two fields g and ϕ∗g are different on M .
Thus there exists at least one point p ∈ M , where g(p) �= (ϕ∗g)(p). As the metric
is measurable, we seem to have a contradiction.

If we look closely at our description of the measurement of the metric compo-
nents in Sect. 2.4, we find that we needed a family of observers. In particular, the
points of the manifold M were identified by these observers. If we apply a diffeo
ϕ ∈ DiffM , then we not only have to change the metric to ϕ∗g, but also transport
the observers. Then the measurement will yield the same components of the metric,
namely those of ϕ∗g with respect to the ϕ-image of the observers.

This motivates the following postulate:

Postulate 4.1 The bare points of the manifold M are not identifiable or distinguish-
able by measurements or observations.

To determine a physical point, one has to describe a sufficient number of measurable
properties of certain fields (including the geometry of a metric) at this point. Such
physical points do not agree with the bare points of M , as the bare points of M
change under DiffM , whereas the physical points do not.

4.4 Weak Gravitational Field

We can get some idea on the rich physics behind the Einstein equations if we
apply them to weak gravitational fields. In comparison with Newtonian theory, a
number of new effects appear. Nevertheless, these effects are very weak and dif-
ficult to measure. More important consequences of the Einstein equations follow
from their non-linearity and the particular coupling between matter and gravity
they postulate. These lead to truly noticeable phenomena (somebody would even
say “catastrophic”) that can be observed far away in the cosmos. We shall con-
sider them in the following chapters. However, the field in the solar system and, in
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particular, around Earth, is weak. By the way, we can also investigate the meaning of
the constant G.

We have already defined weak fields for the spherically symmetric static case
as “asymptotically flat” metric. A more general definition can be formulated as
follows:

Definition 17 Let (M ,g) be a space–time. If there are coordinates xμ with the
properties

1. they cover the whole M and their range is R
4;

2. the components gμν of the metric with respect to xμ satisfy

gμν(x)−ημν = O(ε), (4.19)

gμν ,ρ(x) = O(ε) ,

gμν ,ρσ (x) = O(ε) , ∀x,μ ,ν ,ρ,σ ,

where ημν is the matrix defined by (2.1) and ε is a small number (10−6, say),

then the field gμν is called weak.

In the weak-field theory, the metric is dimensionless and the coordinates have the
dimension of length.

This definition could be formulated so that the “space–time” in it is only a part
of the space–time that we consider. For example, the asymptotically flat region of
a space–time with a strong field near the center is such a “space–time”. On the
other hand, any point p of any space–time has a neighborhood in which condition
(4.19) holds: we just have to use a local inertial frame at p. Hence, the condition is
only non-trivial if M is “sufficiently large”. In the present section, we avoid these
questions and assume that the coordinate range is the whole R

4.
We consider a system of fields containing gravity and call all deviations from

the flat geometry disturbances. An important assumption underlying the weak-field
theory (with Λ= 0) is that any disturbance of Minkowski space–time that is small at
some time remains so if evolved by the exact (non-linearized) field equations. This
assumption, called stability of Minkowski space–time, is non-trivial because of the
non-linearity of the Einstein equations. If Minkowski space–time would be unstable,
then solutions to the linearized equations might start to deviate strongly from exact
ones. Mathematicians have shown a number of theorems about the stability [5].
All of them require stronger fall-off conditions at infinity than those of Definition
17. The recent status is described in [6]. Numerical simulations show that there
is a well-defined (model-dependent) threshold. Disturbances remain small if they
start under the threshold and black holes and singularities evolve if they surpass it
[7]; then the deviations from Minkowski space–time become large. In the present
chapter, we adhere to the “naive” Definition 17 but we shall be careful to discuss
only those cases in which the linearized theory is reliable. The mathematics needed
for an adequate analysis of these problems lies beyond the scope of these Notes.
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4.4.1 Auxiliary Metrics and Gauge Transformations

In Definition 17, gμν is the physical metric on the manifold M . It is determined
by observations and measurements described in Sect. 2.4 and it describes the grav-
itational field. Obviously, the definition uses another metric on M , the Minkowski
metric with components ημν with respect to the coordinates xμ . This will be called
the auxiliary metric.

We can easily see that the auxiliary metric is not uniquely determined. The mea-
surements that determine metrics would anyway lead to the metric gμν and the only
property that can be used for the definition of the auxiliary metric is condition (4.19).
Let us study the freedom in this condition.

To this end, we define new coordinates x′μ by the transformation

x′μ = xμ + εXμ(x) , (4.20)

where Xμ(x) is an arbitrary vector field on M such that the components with re-
spect to xμ and their derivatives are everywhere of order 1 or lower. The inverse
transformation to the first order of ε is

xμ = x′μ − εXμ(x′) , (4.21)

where Xμ(x′) is to be understood as the same four functions of four variables x′μ

as Xμ(x) are of xμ . Then, the components of the physical metric with respect to the
new coordinates are

g′μν(x
′) =

∂xρ

∂x′μ
∂xσ

∂x′ν
gρσ

(
x′κ − εXκ(x′)

)
.

To first order in ε , we obtain

g′μν(x
′) = gμν − ε

(
Xμ,ν +Xν ,μ

)
,

where Xμ = ημνXν and again the values x′μ have to be substituted for the arguments
of all functions of xμ on the right-hand side. It follows immediately

g′μν −ημν = gμν −ημν − ε
(
Xμ,ν +Xν ,μ

)
= O(ε) . (4.22)

Hence, for the purpose of the Definition 17, the coordinates x′μ are as good as xμ .
However, the auxiliary metrics determined by their components ημν with re-

spect to either xμ or x′μ are different because the transformation (4.20) need not be
a Poincaré transformation even to first order. We can recognize the origin for this
non-uniqueness in the freedom in how the flat metric can be put on a given man-
ifold, as it has been shown in Sect. 2.2. Strictly speaking, the auxiliary metric has
not the physical meaning of a space–time metric. In particular, the light cones are
determined by the physical metric.
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Define the field hμν(x) by its components with respect to xμ ,

εhμν(x) = gμν(x)−ημν , (4.23)

and the field h̄′μν(x
′) by its components with respect to x′μ ,

ε h̄′μν(x
′) = g′μν(x

′)−ημν .

Both are defined as differences of two tensor fields of type (0,2), so they are tensors
of the same type. From (4.22), we can calculate the difference of these two sets of
components:

h̄′μν(x) = hμν(x)−Xμ,ν(x)−Xν ,μ(x)+O(ε) . (4.24)

This is a very practical equation, but it is not a tensor equation. The left-hand side is
a component of the tensor field h̄′μν(x

′) with respect to the coordinates x′μ and the
arguments of it are written as x0, x1, x2, and x3, that is, without the primes. The right-
hand side is a sum of components of the fields hμν(x) and Xμ,ν(x) with respect to
the coordinates xμ at the same value of their arguments as the left-hand side. Thus,
the equation does not compare components of two tensors in one coordinate system
and at one point!

We obtain a tensor equation, if we transform the left-hand side of (4.24) to coor-
dinates xμ by the inverse to the transformation

h̄′μν(x
′) =

∂xρ

∂x′μ
∂xσ

∂x′ν
h̄ρσ

(
x′κ − εXκ(x′)

)
. (4.25)

To zeroth order in ε , this yields

h̄μν(x) = hμν(x)−Xμ,ν(x)−Xν ,μ(x)+O(ε) . (4.26)

Here, components of two fields with respect to the same coordinate system are com-
pared at the same point. The form is still the same as in (4.24) because all changes
on the left-hand side are of the order of ε .

Equations (4.25) and (4.26) decompose the transformation from hμν(x) to h̄′μν(x
′)

into two steps. The first, (4.26), corresponds to the change from hμν(x) to h̄μν(x)
keeping the coordinates fixed. The second, (4.25), is a transformation of tensor rep-
resentation functions due to a coordinate transformation (4.20). It is the change
(4.26) of the field that is called gauge transformation in the weak-field theory.
All measurable quantities such as the physical metric, must be independent of the
choice, that is, they must be gauge invariant.

4.4.2 Affine Connection and Curvature

If we expand all equations and quantities in powers of ε and throw away all terms
of order higher than linear, we obtain the so-called linearized theory of gravity. If
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the field is weak, then this is a very practical tool to obtain a lot of insight in a
relatively quick way. Moreover, the freedom in the choice of the auxiliary metric
can be exploited so that the linearized equations simplify further.

Assume that (4.19) is valid and let the tensor field h be defined by (4.23). Let
us calculate all important quantities with respect to xμ in the linear approximation,
that is, we neglect all terms of higher order than linear in ε .

We easily see that the physical contravariant metric in this approximation is

gμν = ημν − εhμν , (4.27)

where the indices on the right-hand side have been raised by the auxiliary metric

hμν = ημρηνσhρσ .

Similarly, the physical connection is

Γμρσ =
ε
2
ημν

(
hνρ,σ +hνσ ,ρ −hρσ ,ν

)
, (4.28)

because all derivatives of ημν vanish. Test particles move along autoparallels of the
physical affine connection. The autoparallel equation in the linear approximation
reads

ẍμ +
ε
2
ημν

(
hνρ,σ +hνσ ,ρ −hρσ ,ν

)
ẋρ ẋσ = 0 . (4.29)

The components of the physical curvature tensor in the linear approximation are
easily calculated from (4.28) to be

Rμνρσ =
ε
2

(
hμσ ,νρ +hνρ,μσ −hμρ,νσ −hνσ ,μρ

)
. (4.30)

In this approximation, we also have

Rμν = ηρσRμρνσ , R = ημνηρσRμρνσ .

Thus, we obtain the Ricci tensor in the linear approximation with respect to coordi-
nates xμ (exercise),

Rμν =
ε
2

[

−�hμν +
(

hρμ −
1
2
δρμ h

)

,ρν
+
(

hρν −
1
2
δρν h

)

,ρμ

]

, (4.31)

where the “wave operator” is defined by

� = ημν
∂
∂xμ

∂
∂xν

,

and
h = ημνhμν .

We see that Rμν consists of the wave operator term plus divergence terms. This is
analogous to the Maxwell equations expressed in terms of the potential Aρ , except
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that our divergence terms are more complicated. Can these terms be removed by a
gauge transformation, as in electrodynamics?

If we make a gauge transformation

h̄μν(x) = hμν(x)+Xμ,ν(x)+Xν ,μ(x) , (4.32)

the divergence term for the new field is (exercise)
(

h̄ρμ −
1
2
δρμ h̄

)

,ρ
=
(

hρμ −
1
2
δρμ h

)

,ρ
+�Xμ .

Hence, if we choose Xμ so that

�Xμ = −
(

hρμ −
1
2
δρμ h

)

,ρ
, (4.33)

then the new field h̄μν(x) satisfies

(
h̄ρμ −

1
2
δρμ h̄

)

,ρ
= 0 . (4.34)

From the mathematical point of view, (4.33) is just the wave equation (with a source)
on Minkowski space–time. This equation has many different solutions. We shall
make use of this additional freedom later. Hence, we can choose Xμ so that (4.34)
holds.

The remaining question is: has the Ricci tensor R̄μν the same form, if expressed
by means of h̄μν(x) as Rμν in terms of hμν(x)? To study how the connection and the
curvature change under gauge transformations, we have to express hμν(x) in terms
of h̄μν(x) and Xμ(x) and plug it into (4.28), (4.29), (4.30) and (4.31). We find that

Γ̄μρσ =
ε
2
ημν

(
h̄νρ,σ + h̄νσ ,ρ − h̄ρσ ,ν

)
− εXμ,ρσ .

The curvature tensor and all tensors constructed from it have exactly the same form
if expressed in terms of h̄μν(x) as equations (4.30) and (4.31) in terms of hμν(x).
The reason is that the two terms resulting from εXμ,ρσ in Γ cancel out in the formula
for the curvature. Thus, we arrive at the important theorem:

Theorem 16 The curvature tensor is gauge invariant.

The Ricci tensor R̄μν has the same form and is therefore given by

R̄μν = −ε
2
�h̄μν

in view of (4.34).
We can even remove the additional term in Γ by transforming the coordinates,

x′μ = xμ + εXμ(x) , (4.35)
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as the inhomogeneous term in the transformation law for Γ is of first order in ε . The
transformation of the curvature tensor and the Ricci tensor is trivial under (4.35)
since their transformation laws are homogeneous and they are already of first or-
der in ε . This also follows directly from the fact that the new auxiliary metric has
components ημν with respect to coordinates x′μ .

To summarize, by a suitable choice of auxiliary metric and coordinates, the basic
equations of the linearized theory can be brought to the form (written without bars
and primes):
The physical metric is

gμν(x) = ημν + εhμν(x) , (4.36)

where the disturbance field hμν(x) satisfies

(
hρμ −

1
2
δρμ h

)

,ρ
= 0 . (4.37)

The connection (the force of gravity in linearized theory) is

Γμρσ =
ε
2
ημν

(
hνρ,σ +hνσ ,ρ −hρσ ,ν

)
. (4.38)

The curvature tensor is

Rμνρσ =
ε
2

(
hμσ ,νρ +hνρ,μσ −hμρ,νσ −hνσ ,μρ

)
(4.39)

and the Ricci tensor is
Rμν = −ε

2
�hμν . (4.40)

This enables us to write Einstein equations

Rμν −
1
2

Rgμν −Λgμν = 8πGTμν (4.41)

in the linear approximation as follows. First, we remove the curvature scalar from
the equation by taking the trace,

R = −4Λ−8πGgμνTμν

and substituting this back:

Rμν +Λgμν = 8πG

(
Tμν −

1
2

gμνgρσTρσ

)
. (4.42)

Second, we linearize (4.42) using (4.36) and (4.40):

−�hμν +2Λhμν = −2Λ
ε
ημν +

16πG
ε

(
Tμν −

1
2
ημνT

)
, (4.43)
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where
T = ημνTμν .

4.4.3 The Cosmological Constant

Let us consider the Einstein equations (4.43) in the case of vanishing stress-energy
tensor:

−�hμν +2Λhμν +
2Λ
ε
ημν = 0 . (4.44)

If we compare, e.g., with the Klein–Gordon equation,

−�Φ−m2Φ= 0 ,

we see that the second term on the left-hand side of (4.44) has the form of a mass
term.

The third term on the left-hand side of (4.44) is large and does not contain hμν , it
has the form of a source. This source drives the solution away from flat space–time.
As we shall see in Chap. 5, evolution over distances comparable with |Λ|−1/2 results
in large deviations from the Minkowski metric.

The reason why such a source appears here is that we have expanded a solution
of the equation

Gμν −Λgμν = 0

around a space–time that itself is not a solution to it. If we expand around de Sitter
(Λ > 0) or anti-de Sitter (Λ < 0) space–times, which are solutions of the above
equation, the source term disappears and the equation becomes homogeneous. The
cosmological constant would then only introduce a mass term of a slightly different
form.

Can we say that Λ has the meaning of mass of the gravitational field? This is
difficult because first, Λ does much more than a humble mass term could do: it
changes the background space–time. Second, even if we accept the new background,
some problems remain. Mass is usually defined as one of two parameters (mass and
spin) that distinguish the irreducible representations of the Lorentz group and as
such has only relevance to fields in Minkowski background. One can say at most
that Λ is a characteristic of the gravitational field similarly as mass is a characteristic
of the electron–positron field, but it is not really a mass.

There is an altogether different interpretation of Λ, which seems to have been
invented by Pauli. Instead of trying to attribute it to the gravitational field, it can
be attributed to matter. Thus, the Λ term can be taken from the left-hand side to
the right-hand side of the Einstein equations. There, it can be written in the form
8πGTΛμν , where

TΛμν =
Λ

8πG
ημν . (4.45)



4.4 Weak Gravitational Field 141

However, this TΛμν is the stress-energy tensor of a rather strange kind of matter, it
is homogeneous (Λ = const) and Lorentz invariant (any multiple of ημν is). This
matter seems to be covered by the definition of an ideal fluid with density and
pressure

ρΛ =
Λ

8πG
, pΛ = − Λ

8πG
, (4.46)

but then either ρ or p must be negative. Now, the ground state of any quantum field
has these properties if its energy density is non-zero. Such states exist in quantum
field theory and the idea has been very fruitful in cosmology.

How can Λ be measured and what is its value? We shall study this question in
the cosmology chapter. The value is about

Λ≈ 10−52m−2 ,

so small that it can be neglected in all processes except the cosmological evolution.
To summarize, the Λ-term can be considered to be a property of either the gravi-

tational field or the matter. What it is and why it has the observed value is an enigma.
In any case, any linear theory with a non-vanishing cosmological constant must start
from an expansion around the space–time with constant curvature Λ. In this chapter,
we neglect Λ and expand only around Minkowski space–time.

4.4.4 The Linearized Einstein Equations

If we drop the cosmological constant, the linearized Einstein equations become

− ε�hμν = 16πG

(
Tμν −

1
2
ημνT

)
, (4.47)

(
hρμ −

1
2
δρμ h

)

,ρ
= 0 . (4.48)

An immediate consequence of these equations is that GTμν is of order ε . The
linearized theory is only applicable if the source is sufficiently weak. Another con-
sequence is the conservation of energy and momentum in the linearized form

T ρμ,ρ = 0 . (4.49)

Indeed, (4.47) implies
−ε�h = −16πGT ,

whence

− ε�
(

hρμ −
1
2
δρμ h

)
= 16πGT ρμ . (4.50)

Taking the divergence of both sides and applying (4.48), we obtain (4.49).
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If (4.49) were exactly valid, it would mean that the matter (for instance an ideal
fluid) moves on the auxiliary space–time as if no gravity was present. The influence
of the gravitational field on the motion of matter appears only in higher orders of
approximation. Indeed, if written out, the exact equation reads

T ρμ,ρ +ΓρνρT νμ −ΓνμρT ρν = 0 .

The last two terms are of higher order in ε than the first one. We may still use this
equation as well as the autoparallel equation when calculating the influence of the
gravitational field on the motion of matter. However, we must keep in mind that
when doing so, we already work in a higher approximation than the linear one.

The linearized Einstein equations have a lot of properties in common with the
Maxwell equations and we shall use the methods well known from electrodynamics
[8]. First, the equations are invariant with respect to all Poincaré transforma-
tions. Therefore, we can adapt our frame to the particular source or to a partic-
ular observer (if there are some in the problem to solve) to simplify the algebra.
Second, there is a residual gauge freedom. We require that the analogue of the
Lorentz condition, (4.33), is satisfied. Similarly as in electrodynamics, this does
not determine the field Xμ(x) uniquely but only up to addition of an arbitrary field
Xμ0 (x),

X ′μ(x) = Xμ(x)+Xμ0 (x) ,

that satisfies the condition
�Xμ0 = 0 .

The most important property of the system (4.47) and (4.48) is its linearity. Hence,
the general solution is a sum of a particular solution and a general solution to the
homogeneous system. The particular solution to an arbitrary source can again be
written as a linear combination of solutions corresponding to point sources. The so-
lution G(�x,�x ′) to the source at the point �x ′ is called Green’s function and satisfies
the equation

�xG
(
�x,�x ′)= 4πδ

(
�x−�x ′) .

The index x at the wave operator indicates that the derivatives act on the vari-
ables �x, not �x ′. The Green’s function G(�x,�x ′) depends only on the difference
�x −�x ′ because of the Poincaré translation invariance. Moreover, from the physi-
cal point of view, it is most advantageous to choose the retarded form of the Green’s
function:

G(�x) =
δ
(
x0 −|x|

)

|x| .

The resulting particular solution corresponds to zero incoming radiation, and we can
write it in the form

εhμν (�x) = −4G
∫

d3x′ G
(
�x−�x ′)

[
Tμν

(
�x′
)
− 1

2
ημνT

(
�x ′)

]
. (4.51)
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After carrying out the integration in x0, we obtain

εhμν
(
x0,x

)
= −4G

∫
d3x′

Tμν
(
x0 −|x′|,x′

)
− 1

2ημνT
(
x0 −|x′|,x′

)

|x−x′| . (4.52)

This is in any case a particular solution to (4.47), but does it also solve (4.48)? To
answer this question, we rewrite (4.51):

ε
[

hρμ(�x)−
1
2
δρμ h(�x)

]
= −4G

∫
d3x′ G

(
�x−�x ′)Tμν(�x ′)

and obtain step by step

ε
[

hρμ(�x)−
1
2
δρμ h(�x)

]

,ρ
= −4G

∫
d3x′

∂G(�x−�x ′)
∂xρ

T ρμ (�x ′)

= 4G
∫

d3x′
∂G(�x−�x ′)
∂x′ρ

T ρμ (�x ′) = −4G
∫

d3x′ G(�x−�x ′)T ρμ,ρ(�x ′) = 0 .

We have used the property of Green’s function that

∂G(�x−�x ′)
∂xρ

= −∂G(�x−�x ′)
∂x′ρ

as well as (4.49). Hence, we have a particular solution to the whole system.
The general solution to the system (4.47) and (4.48) with Tμν = 0 can be de-

composed into plane waves (Fourier transformation). Plane waves will be studied in
Sect. 4.4.7.

4.4.5 Stationary Fields

Suppose that the matter source and the gravitational field are stationary. More pre-
cisely, set

Tμν ,0 = 0 , hμν ,0 = 0 . (4.53)

The divergence equation becomes

∑
k

Tμk,k = 0 (4.54)

and the retarded integral (4.52) simplifies to

εhμν(x) = −4G
∫

d3x′
Tμν(x′)− 1

2ημνT (x′)
|x−x′| . (4.55)

Assume further that the source is spatially bounded, that is the stress-energy ten-
sor Tμν(x) is only non-zero in a 3-volume V with finite boundary ∂V . In addition,
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Tμν(x) is required to be smooth so that it vanishes together with its derivatives at
the boundary ∂V . The assumptions are analogous to those made in electrodynamics
at the starting point of the multipole expansion [8], and we proceed similarly.

Let us calculate the gravitational field far away from V . We choose the origin of
the coordinates x1, x2, and x3 somewhere inside V and expand everything in powers
of the small parameter |x|′/|x|. Thus,

1
|x−x′| =

1
|x|

(

1+∑
k

xk

|x|
x′k

|x| +∑k,l
xkxl

|x|2
3x′kx′l −|x′|2δ kl

2|x|2 + · · ·
)

.

Here we used the expansion

(1+a)−1/2 = 1− 1
2

a+
3
8

a2 − 5
16

a3 + · · · ,

valid for small a, and collected all terms with common factors

xk

|x| ,
xkxl

|x|2 , . . .

We calculate, retaining only terms up to the second order in |x|′/|x|:

εhμν(x) = −4G
|x|

{∫
d3x′

[
Tμν(x′)−

1
2
ημνT (x′)

]

+ ∑
k

xk

|x|2
∫

d3x′ x′k
[

Tμν(x′)−
1
2
ημνT (x′)

]
+ · · ·

}

.

In this way, we obtain

εh00(x) = −2G
|x|

[

M +M∑
k

xk

|x|2 Xk +
∫

d3x′ ∑
k

Tkk

+ ∑
k

xk

|x|2
∫

d3x′ x′k∑
l

Tll + · · ·
]

, (4.56)

where
M =

∫

V
d3x T00(x) (4.57)

is the total mass and

Xk =
1
M

∫

V
d3x xkT00(x) (4.58)

are the center-of-mass coordinates. The last two terms in the square brackets of
(4.56) can be dealt with as follows. From (4.54), it follows that

Tkl =∑
m

(
T mkxl +T mlxk

)

,m
− 1

2∑m,n

(
T mnxkxl

)

,mn
(4.59)
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and

∑
l

Tllx
k =∑

m,l

(
T mlxmxk − 1

2
T lkxmxm

)

,l
. (4.60)

Hence, the integrands are divergences and can be turned into surface integrals along
∂V . These integrals vanish because Tkl is zero there. Thus, we have

εh00 = −2GM
|x|

(

1+
1
|x|2∑k

Xkxk + · · ·
)

. (4.61)

Next, we calculate h0k:

εh0k(x) = −4G
|x|

[∫

V
d3x′ T0k(x′)+∑

l

xl

|x|2
∫

V
d3x′ x′lT0k(x′)+ · · ·

]

.

From the identity

T0k = −∑
l

(
T l

0 xk
)

,l
, (4.62)

we conclude that the first integral is zero. It is nothing but the total 3-momentum
Pk of the source. It vanishes as the source would not be stationary with Pk �= 0.
Indeed, (4.62) follows from the conservation, T μ0,μ = 0 together with the stationarity,

T 0
0,0 = 0. We can write further

−T k
0 xl = −1

2

(
T k

0 xl +T l
0 xk

)
− 1

2

(
T k

0 xl −T l
0 xk

)

= −∑
m

(
T m

0 xkxl
)

,m
+

1
2∑m

εklmεmi jT
i

0x j .

Here εklm is the totally antisymmetric quantity satisfying ε123 = 1 (εklm is obtained
from εklm by raising its indices with ημν ), and we have used the identity

T k
0 xl +T l

0 xk =∑
m

(
T m

0 xkxl
)

,m
.

This divergence does not contribute to the integral and we obtain

εh0k(x) =
2G
|x|3∑l,m

εkmlJ
mxl , (4.63)

where
Jm = εmkl

∫

V
d3x xkT l

0 (x) (4.64)

is the total angular momentum (observe that Jm = −Jm).
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Finally,

εhkl(x) = − 2G
|(x)|

[
Mδkl +Mδkl∑

m

xm

|(x)|2 Xm +
∫

V
d3x′

(
2Tkl −δkl∑

m
Tmm

)

+ ∑
m

xm

|(x)|2
∫

V
d3x′ x′m

(
2Tkl −δkl∑

m
Tmm

)
+ · · ·

]
. (4.65)

We can turn the volume integrals into vanishing surface integrals in view of (4.59),
(4.60) and

∑
l

T klxl =
1
2∑l

(
T kl |(x)|2

)

,l
.

Hence,

εhkl(x) = −2GM
|x| δkl

(
1+

1
|(x)|2∑m

Xmxn + · · ·
)

. (4.66)

The comparison to electrodynamics shows that the analogue of the electric monopole
is the total mass M and that of the electric dipole is MXk, where Xk is the position
vector of the center of mass. The analogue of the electric current is the total mo-
mentum Pk and that of the magnetic dipole is the angular momentum Jk.

The metric can be simplified if the coordinates xk are transformed by a shift −Xk

so that the center of mass is at the origin. Such a coordinate system is called co-
moving and mass centered. The final form of the metric is

ds2 =
(

1− 2GM
|x|

)(
dx0)2

+
4G
|x|3 εkmnJmxn dx0 dxk −

(
1+

2GM
|x|

)
δkl dxk dxl .

(4.67)
Keep in mind that Jm are the components of the angular momentum as it is usually
defined, having the same direction as the vector of angular velocity.

Now, we can understand the meaning of the constant G in the Einstein equations.
Consider the leading terms in the metric (4.67),

ds2 =
(

1− 2GM
|x|

)(
dx0)2 −δkl dxkdxl ,

and compare this to (2.54) in which we expand the exponential,

e2Φ ≈ 1+2Φ

and write out Φ,

Φ= −G′M
|x| ,

where G′ is Newton’s constant. Equality can only be obtained if G = G′. That is,
G must be Newton’s constant to ensure that Newtonian theory arises as the first
approximation of the Einstein equations.
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4.4.6 Gravitomagnetic Phenomena

The gravitomagnetic effect that is mentioned most frequently is the dragging of in-
ertial frames or Lense–Thirring effect. An orthonormal tetrad that is parallel trans-
ported along any time-like trajectory near a stationary rotating body rotates with
respect to the stationary coordinates. One part of the tetrad rotation is proportional
to the angular momentum of the body and its angular velocity is roughly aligned
with that of the body, as if “dragged” by it.

Let us study this effect using the metric (4.67) for a trajectory of a stationary
observer,

x0 = λ , xm = xm
0 .

A vector field V μ(λ ) that is parallel along this curve satisfies the equation

V̇ μ +Γμρ0V ρ = 0 .

Equation (4.38) implies that

Γ0
m0 = Γm

00 =
ε
2

h00,m ,

and
Γm

n0 = −ε
2

(h0m,n −h0n,m) .

Substituting for ε2 hμν from (4.67) leads after some calculation to

Γ0
m0 = Γm

00 =
GM
|x|3 xm ,

and
Γm

n0 =Ωkεkmn

with

Ωk =
G
|x|3

(
Jk −3Jl

xlxk

|x|2
)

.

Now, the equations of parallel transport become

V̇ 0 +
GM
|x|3 xmV m = 0

and

V̇ m +
GM
|x|3 xmV 0 +ΩkεkmnV n = 0 .

Thus, the tetrad suffers a boost associated to the velocity

vm =
GM
|x|3 xm ,
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and a rotation with angular velocity Ωk—this is the dragging. Similar expressions
are present in the parallel transport along any curve that has a non-zero com-
ponent ẋ0 of its tangent vector. We can also see from the above formula that
Jkxk = 0 in the equatorial plane of the rotating body and hence Ωk = GJk/|x|3
there.

The dragging of inertial frames can be measured by observing, say, gyroscopes
in a satellite on a circular trajectory around Earth. As is easily understood by invok-
ing the equivalence principle, the rotational axis of an ideal gyroscope is parallel
transported. Since the effect has |x|−3 dependence, it is extremely tiny. The first
measurement of the dragging is just on the way.

Another important effect is the difference in the attraction that a rotating body
exerts on co-rotating and counter-rotating satellites in its equatorial plane. To study
it, let us transform the metric (4.67) to spherical coordinates corresponding to the
frame such that Jk = Jδ 3

k , where J is a number:

ds2 =
(

1− 2GM
r

)
dt2 − 4GJ

r
sin2ϑ dt dϕ

−
(

1+
2GM

r

)(
dr2 + r2 dϑ 2 + r2 sin2ϑ dϕ2) . (4.68)

Its Killing vectors are the time translation δ μ0 and the rotation along the z-axis δ μ3 .
Let us restrict ourselves to the equatorial plane ϑ = π/2 and write the conserva-
tion laws

e =
(

1− 2GM
r

)
ṫ , (4.69)

j =
(

1+
2GM

r

)
r2ϕ̇ , (4.70)

1 =
(

1− 2GM
r

)
ṫ2 − 4GJ

r
ṫϕ̇−

(
1+

2GM
r

)(
ṙ2 + r2ϕ̇2) . (4.71)

Substitute the expressions for ṫ and ϕ̇ from (4.69) and (4.70) into (4.71) and calcu-
late only the linear terms in ε . Thus, the so-called radial equation results:

ṙ2 +V (r) = 0 , (4.72)

where the effective potential is (exercise)

V (r) = 1− e2 − 2GM
r

+
j2

r2 +
4GJ je

r3 − 2GM j2

r3 . (4.73)

The interpretation of its different terms is the following. The third and fourth terms
coincide with the well-known Newtonian effective potential. The fifth one describes
the influence of the angular momentum J and the sixth one is a correction to the
Newtonian term j2/r2.
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Differentiating (4.72) with respect to λ yields

r̈ = −V ′(r)
2

.

Hence, the additional radial acceleration due to J is

r̈ =
6GJ je

r4 .

We see that this term is repulsive for J j > 0 and attractive for J j < 0. This means
that co-rotating satellites (J j > 0) are attracted less by the central body than the
counter-rotating ones (J j < 0). Indeed, the angular momentum term is only a small
correction to the gravity pull given by the third term in V (r). This effect plays a role
in the energetics of black holes.

4.4.7 Plane Waves

We mentioned that any general solution of the homogeneous linearized Einstein
equations can be written as a linear combination of monochromatic plane
waves,

hμν(�x) = Aμν exp
(
ikρxρ

)
,

where Aμν is a constant tensor and kρ a constant null vector satisfying the transver-
sality relation in the form

ηρσ
(
Aρμkσ −Aρσkμ

)
= 0 .

The monochromatic plane wave alone is not a good approximation to any exact so-
lution of the full Einstein equations as it does not satisfy suitable fall-off conditions.
However, any field hμν satisfying such conditions allows a decomposition into plane
waves, which may be useful to study its properties.

A general (not monochromatic) plane wave also depends on the space–time coor-
dinates only through the linear function kρxρ , but each component hμν is a different
function of the variable kρxρ . Such waves are idealizations that approximately de-
scribe local properties of gravitational waves far away from their sources.

Given a plane wave, we can rotate the space coordinates so that the wave travels
in the z direction: kt = −kz = ω and kx = ky = 0. Then, the field has the form

hμν(t − z)

(the constant ω has been incorporated into hμν ). Our study of this wave is simplified
by using coordinates u, x, y, and v instead of t, x, y, and z,

u = t − z , v = t + z .
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The auxiliary metric then has components η̃μν , given by the matrix

⎛

⎜⎜
⎝

0 0 0 1/2
0 −1 0 0
0 0 −1 0

1/2 0 0 0

⎞

⎟⎟
⎠ .

Its inverse η̃μν is ⎛

⎜⎜
⎝

0 0 0 2
0 −1 0 0
0 0 −1 0
2 0 0 0

⎞

⎟⎟
⎠ .

Observe that the change from inertial coordinates to null coordinates is not a gauge
transformation, but a pure coordinate transformation so that the auxiliary metric
must change components in order to remain the same tensor field.

The field hμν(u) satisfies (4.47) with Tμν = 0, but not necessarily the transver-
sality condition (4.48), which now reads

(
hu
μ −1/2δ u

μh
)
,u

, (4.74)

where
hμρ = η̃μνhνρ , h = η̃μνhμν ,

so that hu
u = hv

v. Thus, (4.74) implies that
(
hx

x +hy
y

)
,u

= 0 , (4.75)

and
(hu

x),u =
(
hu

y

)
,u

= (hu
v),u = 0 . (4.76)

As we know, condition (4.74) does not determine the gauge uniquely. We can still
change the gauge by a field Xμ which satisfies the wave equation. Any such field
that preserves the form hμν(u) (that is the fact that hμν(u) depends only on u) can
be written as

Xμ(u)+X0
μ(x,y,v) ,

with four arbitrary functions Xμ(u) of one variable and four arbitrary linear func-
tions X0

μ(x,y,v) of three variables. This leads to the change of components of huμ(u),

huμ(u) �→ huμ(u)+
(
1+δ u

μ
)

Xμ,u(u)

for any μ . Hence, all of them can be transformed to zero by a suitable choice of
Xμ(u). According to (4.75) and (4.76), hxx + hyy, hvx, hvy, and hvv are constant.
We can transform these constants to zero by a suitable choice of the linear func-
tions X0

μ(x,y,v) (exercise). The final result is that the only non-zero components of
hμν(u) are

hxx = −hyy (4.77)
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and
hxy = hyx . (4.78)

This gauge is called transverse traceless or TT-gauge. The only gauge freedom left
is (exercise)

hxx �→ hxx + c , hyy �→ hyy − c ,

hxy �→ hxy ,

where c is a constant. Hence, the value of hxx is not gauge invariant (unless some
fall-off conditions are used).

The non-zero components (4.77) and (4.78) can be considered as components
of a tensor in the (x,y)-plane for each u. This tensor can always be written in
the form

e+ f+(u)+ e× f×(u)

with f+(u) = hxx(u), f×(u) = hxy(u), and

e+ =
(

1 0

0 −1

)
, e× =

(
0 1

1 0

)
, (4.79)

where e+ and e× are two polarization tensors of gravitational waves. This is anal-
ogous to the two polarization vectors of electromagnetic waves, that is two vectors
orthogonal to the plane wave propagation direction. The components hμν satisfying
(4.77) and (4.78) transform under the rotation in the (x,y)-plane

x = x′ cosφ − y′ sinφ ,

y = x′ sinφ + y′ cosφ

as follows

h′11 = h11 cos2φ +h12 sin2φ ,

h′12 = −h11 sin2φ +h12 cos2φ .

In particular, e+ is mapped to −e× and e× to e+ if φ = π/4.1

Any trace-free symmetric tensor in the plane can be diagonalized by a rotation.
To obtain h′12 = 0 we need

tan2φ =
h12

h11
.

Thus, any hμν is a multiple of a rotated e+. The x-axis can be aligned with the
eigenvector of hμν corresponding to its positive eigenvalue at some fixed point. In

1 In general, to transform between the polarization states of a spin-s-zero-rest-mass field, one needs
the rotation by π/2s, [9]. Accordingly, gravity has spin 2.
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this way, the polarization determines certain directions in the (x,y)-plane. A plane
wave is called linearly polarized if these directions do not depend on u, that is if
there is α ∈ [0,2π) and a function f (u) such that

f+(u) = f (u)cosα , f×(u) = f (u)sinα .

4.4.8 Measurable Properties of Plane Waves

We showed that the changes in the amplitude f (u) and the polarization of a lin-
early polarized plane wave are gauge invariant. How can we measure them? We
describe a simple measurement that works in principle. A real measurement can
be based on this idea but must be technically much subtler as the effect is very
tiny.

Let two observers Alice (A) and Bob (B) move along auto-parallels. Let A be
steadily sending a light signal of a fixed frequency νA and B receiving it and mea-
suring the frequency νB(t) at each value t of his proper time.

To see how both amplitude and polarization of a wave can be measured, we
assume that the space–time contains a linearly polarized plane wave. That is,

ds2 = du dv− [1+ ε f (u)]dx2 − [1− ε f (u)]dy2 , (4.80)

where f (u) is a smooth function for u ∈ R.
We need two time-like autoparallels for the observers and a null one for the sig-

nal. The general autoparallel for the metric (4.80) is easily found as the geometry
has the typical plane wave symmetry2: there are three mutually orthogonal Killing
fields, two of them space-like, δ μx and δ μy , and one null, δ μu . The conservation laws
then read

Px = [1+ ε f (u)]ẋ , Py = [1− ε f (u)]ẏ , (4.81)

and
P = u̇ . (4.82)

If we require that the square norm of the tangent vector to the autoparallel is σ , and
if we substitute the components ẋ, ẏ, and u̇ from (4.81) and (4.82) into the metric,
we obtain

Pv̇− [1+ ε f (u)]−1P2
x − [1− ε f (u)]−1P2

y = σ .

For a time-like autoparallel parameterized by the proper time we have σ = 1
and for a light-like autoparallel σ = 0. We calculate everything just to first order
in ε .

2 The Einstein equations can be solved exactly for this symmetry. The result is the so-called exact
plane wave, found by Rosen, by Bondi, by Ehlers and Kundt (see [10], p. 957). It also contains two
arbitrary functions of u.
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Thus, we obtain

u̇ = P , (4.83)

ẋ = Px[1− ε f (u)] , (4.84)

ẏ = Py[1+ ε f (u)] , (4.85)

v̇ = P−1{σ +P2
x [1− ε f (u)]+P2

y [1+ ε f (u)]
}

. (4.86)

Integration of these differential equations is straightforward:

x(u) = PxP−1u− εPxP−1F(u)+X , (4.87)

y(u) = PyP−1u+ εPyP−1F(u)+Y , (4.88)

v(u) =
σ +P2

x +P2
y

P
u− ε

P2
x −P2

y

P
F(u)+V , (4.89)

where

F(u) =
∫ u

0
dx f (x) ,

X , Y , and V are constants and u = Pλ .
Let the observers follow autoparallels with Px = Py = 0 and σ = P = 1. It follows

that they stay at fixed values of the original coordinates x, y, and z because of (4.84),
(4.85), and ż = v̇− u̇ = P−1 −P due to (4.83) and (4.86). Further, we choose the
values XA,B, YA,B, and VA,B = V of the constants X , Y , and V for the observers. Thus,
they both lie at the same value of z and their proper time coincides with u.

The light-like autoparallel that joins them starts at the value u = uA from A. The
constant P is determined by the physical parameter λ of the autoparallel. It will
be fixed but arbitrary. However, for the sake of simplicity, we shall carry out all
calculations with the affine parameter u along the null autoparallel. When we need
the 4-momentum pμ , we calculate it via pμ = P−1 dxμ/du. The autoparallel then
has the form

x(u) = Px(u−uA)− εPx[F(u)−F(uA)]+XA , (4.90)

y(u) = Py(u−uA)+ εPy[F(u)−F(uA)]+YA , (4.91)

v(u) =
(
P2

x +P2
y

)
(u−uA)− ε

(
P2

x −P2
y

)
[F(u)−F(uA)]+uA +V . (4.92)

We are looking for the values of Px, Py, and uB such that

x(uB) = XB , y(uB) = YB , v(uB) = uB +V . (4.93)

Let us expand this

Px = P(0)
x + εP(1)

x , Py = P(0)
y + εP(1)

y , uB = u(0)
B + εu(1)

B ,
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and collect the terms up to linear order in ε from (4.93). The zero-order equations
give

P(0)
x =

XB −XA

D0
, P(0)

y =
YB −YA

D0
, u(0)

B −uA = D0 , (4.94)

where

D0 =
√

(XB −XA)2 +(YB −YA)2

is the distance between the observers in the ε = 0 approximation. In fact, we can
define a distance in the (x,y)-surface at any “time” u using the metric (4.80):

D(u) =
√

[1+ ε f (u)](XB −XA)2 +[1− ε f (u)](YB −YA)2

and write down D(u) with the accuracy to first order in ε:

D(u) = D0

[
1+

ε
2

(XB −XA)2 − (YB −YA)2

(XB −XA)2 +(YB −YA)2 f (u)
]

. (4.95)

The first-order equations in which P(0)
x , P(0)

y , and u(0)
B are expressed with the help

of (4.94) can be solved for P(1)
x , P(1)

y , and u(1)
B :

P(1)
x =

XB −XA

D0

[
1+2

(YB −YA)2

D2
0

]
F(uA +D0)−F(uA)

2D0
, (4.96)

P(1)
y = −YB −YA

D0

[
1+2

(XB −XA)2

D2
0

]
F(uA +D0)−F(uA)

2D0
, (4.97)

u(1)
B =

(XB −XA)2 − (YB −YA)2

2D2
0

[F(uA +D0)−F(uA)] . (4.98)

To calculate the redshift, we use formula (2.32). Hence, we need the 4-momentum
pμ of the null autoparallel at its intersections with the observers and the tangent vec-
tors ẋμA,B of the observers there. We obtain, after some calculation (exercise)

λB −λA

λA
=
ε
2

(XB −XA)2 − (YB −YA)2

(XB −XA)2 +(YB −YA)2 [ f (uA +D0)− f (uA)] (4.99)

the final formula for the redshift.
It is interesting to compare the redshift formula with a formula for the change in

the relative distance between the observers from the time uA to the time uB. Equa-
tion (4.95) gives, to first order in ε ,

D(uB)−D(uA)
D(uA)

=
ε
2

(XB −XA)2 − (YB −YA)2

(XB −XA)2 +(YB −YA)2 [ f (uA +D0)− f (uA)] . (4.100)
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Hence, the redshift determines the relative change of distance. We shall see in our
treatment of cosmology that the cosmological redshift has the same property. There
are some differences, however. First, the wave formula holds only in the linear
approximation while the cosmological formula is exact. Second, the cosmological
result is completely isotropic, while the wave one is not.

Thus, we arrive at the effect of the polarization of the wave. The polarization
tensor of our wave is e+. It has two orthogonal eigenvectors, δ μx and δ μy , and the
corresponding eigenvalues, +1 and −1, respectively. The redshift or relative dis-
tance changes are depending uniformly on the angle ζ between the separation vector
(XB −XA,YB −YA) of the observers and the +1-eigenvector. We have

cosζ =
XB −XA

D0
,

and the non-isotropy factor in both formulas (4.99) and (4.100) is simply cos2ζ .
For example, if the observers are aligned along the +1-axis, the factor is 1, along
the −1-axis, it is −1, and if they are arranged diagonally (α = π/4), then the effect
is zero, etc. This angle dependence gives an observable meaning to the polarization
of the wave.

Modern detectors of gravitational waves [11] are utilizing the relative change
of distances in two mutually orthogonal directions. An arrangement similar to the
Michelson–Morley experiment can in principle detect changes in the interference
pattern if a gravitational wave is passing.

There is much more to the theory of gravitational waves than we have just de-
scribed. The questions of energy that the waves carry, that they take away from their
sources (back reaction), and that they transfer to matter systems are fascinating and
very difficult (they cannot be answered within the linearized theory). On the other
hand, the action of gravitational waves on matter is extremely weak: all techniques
that were in use at the time of writing these Notes (2006) were not enough to detect
the waves directly. That is why we now turn to more conspicuous effects of gravity.

4.5 Exercises

1. Show that

δ
{μ
ρσ
}

=
1
2

gμν
(
∇ρδgνσ +∇σδgνρ −∇νδgρσ

)
,

δRμνρσ = ∇ρδΓμνσ −∇σδΓμνρ .

Show that δgμν = −gμκgνλ δgκλ . Use this equation and the fact that the varia-
tion commutes with the derivative.

2. Prove that the curvature of a metric connection satisfies

Rμνρσ =
1
2

(
∂ν∂ρgμσ +∂μ∂σgνρ −∂μ∂ρgνσ −∂ν∂σgμρ

)
+ΔRμνρσ ,
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where all terms in ΔRμνρσ are quadratic in the first derivatives of the metric,
∂ρgμν , and do not contain second derivatives.

3. Prove that the three relations

Rμνρσ = −Rνμρσ , (4.101)

Rμνρσ = −Rμνσρ , (4.102)

Rμνρσ +Rμρσν +Rμσνρ = 0 , (4.103)

imply the symmetry Rμνρσ = Rρσμν .
4. Find the number of independent components of Rμνρσ in a n-dimensional man-

ifold, subject to the assumption that all independent symmetries are described
by the (4.101), (4.102), and (4.103). Hint: consider how many independent com-
ponents there are for a totally anti-symmetric tensor of arbitrary type in a n-
dimensional manifold.

5. Compare (4.26) for the gauge transformation with (2.78) for the Lie derivative of
a (0,2) symmetric tensor and explain the relation between them (including the
sign!)

6. For many calculations with the (non-linearized) Einstein equations, it is advanta-
geous to choose coordinates such that the condition

(√
−ggμν

)
,ν = 0

is satisfied. These are called harmonic coordinates or de Donder gauge condition.
Show that (1) Equation (4.37) is the linearized form of the de Donder condition,
and that (2) harmonic coordinates are harmonic functions in the sense that they
satisfy the covariant Laplace equation.

7. Find the orders of magnitude of the corrections 2GMR−1 and 2GJR−2 to the flat
metric at the surface of Earth, that is, R = REarth, M = MEarth and J = JEarth. Calcu-
late JEarth within Newtonian mechanics assuming the Earth to be a homogeneous
perfect sphere.

8. Find the error in the following argument. Suppose that (1) metric determines
all lengths and time intervals and (2) that components of the metric in a given
space–time are time–dependent. Then all lengths (wavelengths of light signals,
distance between observers, etc.) and time intervals in the space–time change
with time in a universal way given by the space–time dependence of the metric.
(Hint: the components of a metric depend not only on the geometry but also on
the coordinates . . . )
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Chapter 5
Cosmological Models

In this chapter we study the question which solutions of Einstein’s equations can
describe the universe that we observe around us.

We consider the details of space–time geometry, such as the gravitational field
of single galaxies, stars, or planes, as small perturbations of a smooth background
space-time. We make some assumptions about this coarse geometry that seem rea-
sonable today. We shall see that the consequences of these hypotheses are in re-
markable agreement with many observations.

Modern cosmology is a field that uses all kinds of physics and influences our
view of the whole world. In this section we discuss some general-relativistic aspects
of cosmology, such as the basics of the dynamics of matter subject to gravity, as well
as the geometry of the space-times in question, the so-called cosmological models.
We shall not consider the thermal evolution of the universe, the baryon synthesis,
the formation of the elements, or the origin of galaxies.

5.1 Homogeneous Isotropic 3-Spaces

5.1.1 The Cosmological Principle

The starting hypothesis of cosmology is that from a mathematical point of view,
the cosmological models are the solutions of Einstein’s equations with the largest
possible spatial symmetry. This assumption of symmetry is aesthetically appealing.
The universe, as a whole, should be symmetric, and all structures perturbing the
symmetry should be relatively small. Besides that, there is observational evidence
for this assumption, namely the isotropy of the cosmic microwave background radi-
ation (CMB).

The CMB was discovered in 1965 by Penzias and Wilson [1]. These scientists
constructed a radio receiver for wavelength λ = 7.25 cm with a very low noise
level. They were receiving a noise signal roughly corresponding to the temperature

Hájı́ček, P.: Cosmological Models. Lect. Notes Phys. 750, 159–208 (2008)
DOI 10.1007/978-3-540-78659-7 5 c© Springer-Verlag Berlin Heidelberg 2008
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T = 2.5− 4.5 K. This discovery was rewarded with the Nobel Prize. Since then,
this thermal radiation was measured in all wavelengths and in all directions. The
result is the spectrum of a nearly perfect black-body radiation of temperature 2.7 K
with almost perfect isotropy and no polarization. This radiation is interpreted as a
remainder from the early times of the universe, when densities and temperatures
were large, and radiation was in thermal equilibrium with and dominated matter
(“thermal history of the universe”, [2, 3]).

In general, we assume that we are not at a distinguished point, or center, of the
universe. This is the so-called Copernican principle. Then the CMB is isotropic
everywhere else in the universe, too. This is only possible if the spatial geometry of
the universe, averaged over large distances, is homogeneous and isotropic. This is
the so-called cosmological principle. We will study examples of such 3-spaces.

5.1.2 Euclidean Space

The simplest example is E
3, that is the manifold R

3 with the metric

d3s2 =
(
dx1)2

+
(
dx2)2

+
(
dx3)2

in Cartesian coordinates x1, x2, x3, and

d3s2 = dr2 + r2dϑ 2 + r2 sin2ϑ dϕ2 (5.1)

in spherical coordinates.
Every two points p and q in E

3 define a translation φ : E
3 �→ E

3, which maps p
to q, φ(p) = q, and does not change the metric. This is the mathematical description
of the fact that each point is equivalent to every other point, that is the homogeneity
of space. Similarly, at each point p, we can represent two arbitrary directions by
unit vectors uk and vk and find a rotation φ : E

3 �→ E
3, which fixes p, φ(p) = p

but transforms uk to vk, φ(uk) = vk. The metric is also invariant under rotations.
This property is called the isotropy of space at p. If space is isotropic at all points,
we simply call it isotropic. We remark that the isometry group E 3 of E

3 is six-
dimensional [4]. It is generated by three independent infinitesimal translations, and
three independent infinitesimal rotations.

5.1.3 The Sphere S3

Another 3-space with as much symmetry is the 3-sphere S3. We can deduce many
properties of S3 by regarding S3 as a sub-manifold of E 4. However, this is just a
method to simplify calculations and to help imagination. All properties which are
of interest to us also follow directly from the metric of S3. Therefore, consider E

4

with Cartesian coordinates {Xμ} and the metric
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dS2 =∑
μ

(dXμ)2 . (5.2)

S3 consists of the points satisfying the equation

∑
μ

(Xμ)2 = R2 , (5.3)

where R > 0 is the radius of the sphere. The S3 constructed in this way is invariant
with respect to all rotations about the origin in E

4. This is the group SO(4), gener-
ated by six independent infinitesimal rotations [4] (in E

4 there are six distinct pairs
of coordinate axes). In addition, we need a metric on S3 in some coordinates. We
choose coordinates as follows (Fig. 5.1):

Let r(p) be the distance of the point p from the X4-axis. All points with the same
distance r from the X4-axis are contained in a 2-sphere, which can be projected
onto the hyperplane X4 = 0. For this projection, we choose the usual spherical co-
ordinates ϑ and ϕ . Then the coordinates Xμ and r, ϑ , and ϕ on S3 are related as
follows:

X4 = ±
√

R2 − r2, Xk = rnk , (5.4)

where
n1 := sinϑ cosϕ, n2 := sinϑ sinϕ, n3 := cosϑ . (5.5)

Some computations simplify a lot if we directly employ the properties of the three
functions nk(ϑ ,ϕ) (exercise). If the range of r is the interval [0,1] and the range of
ϑ and ϕ are the usual intervals, then we obtain the upper (lower) hemisphere for
the upper (lower) sign. Clearly, the coordinates Xμ , given by the above embedding,

p

R

S (p)

X1

S(p)

S0
2

S1
2

X2

X3

Fig. 5.1 The sphere S2 is represented by its intersection S2
0 with the (X1,X2)-plane and by S2

1 with
the (X2,X3)-plane. The circle S(p) through p is projected to S′(p) in the (X1,X2)-plane
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satisfy (5.3) for all values of r, ϑ , and ϕ . We obtain the metric of the sphere by
expressing the differentials of Xμ in terms of the differentials of r, ϑ , and ϕ and
substituting into (5.2). This results in

d3s2 =
dr2

1−R−2r2 + r2 (dϑ 2 + sin2ϑ dϕ2) . (5.6)

5.1.4 The Pseudo-sphere P3

The next example is the 3-space P3, which is sometimes called pseudo-sphere, hy-
perbolic plane, or Lobachevsky space. We again use the method of embedding. Con-
sider Minkowski space in an inertial frame {Xμ} and the metric

dS2 =
(
dX0)2 −

(
dX1)2 −

(
dX2)2 −

(
dX3)2

.

P3 is defined by the equation

(
x0)2 −

(
x1)2 −

(
x2)2 −

(
x3)2

= R2 (5.7)

and X0 > 0. As the Minkowski interval to the origin is invariant under all Lorentz
transformations, this hypersurface is also invariant. Its isometry group is the Lorentz
group SO(1,3), a six-dimensional group generated by three infinitesimal boosts,
and three infinitesimal rotations [4]. The construction of the coordinates on P3 is
analogous to the case of the sphere (Fig. 5.2).

We denote by r the Minkowski interval to the X0-axis and by ϑ and ϕ the spheri-
cal coordinates of the 2-sphere in the X0 = 0 plane. Then the embedding relations are

P1
2

p

R

X1

X2

X0

S(p)

S (p)

Fig. 5.2 The pseudo-sphere P2 represented by its intersection P2
1 with the (X0,X2)-plane. The

circle S(p) through p is projected to S′(p) at the (X1,X2)-plane
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Xk = rnk,

X0 =
√

R2 + r2 .

Clearly these relations satisfy (5.7). All points in the pseudo-sphere can be obtained
by taking r in the interval [0,∞]. The metric is

d3s2 =
dr2

1+R−2r2 + r2 (dϑ 2 + sin2ϑ dϕ2) . (5.8)

All three metrics, (5.1), (5.6), and (5.8), can be expressed by one formula:

d3s2 =
dr2

1−Kr2 + r2 (dϑ 2 + sin2ϑ dϕ2) . (5.9)

where K = R−2 results in (5.6), K = −R−2 in (5.8), and K = 0 in (5.1). We shall
need the curvature tensor of these spaces. A long but straightforward calculation
yields (exercise)

Rklmn = K(gkmgln −gknglm) , (5.10)

where gkm is the metric (5.9). K is the so-called Gauss curvature of the space, or
briefly space curvature.

It can be shown that the previous three examples are (locally) the only homoge-
neous and isotropic 3-spaces with positive-definite metric. The corresponding math-
ematical field is called the “theory of symmetric spaces” [2, 5].

5.2 Robertson–Walker Space-Times

5.2.1 Metric

In the previous section, we studied the geometry of the 3-spaces. As a next step,
we shall describe a metric such that the space-time can be foliated by space-like
hypersurfaces with geometry given by (5.9). One possibility is

ds2 = dt2 −a2(t)
[

dr2

1−Kr2 + r2 (dϑ 2 + sin2ϑ dϕ2)
]

. (5.11)

Space-times with the metric (5.11) are called Robertson–Walker space-times. The
arbitrary function a(t) is called scale factor, and K is a constant.

To see that the hypersurfaces t = const of the metric (5.11) have the geometry
(5.9), we change coordinates via r = kr′ with k > 0. The result is again a metric of
the form (5.11),

ds2 = dt2 −a′2(t)
[

dr′2

1−K′r′2
+ r′2

(
dϑ 2 + sin2ϑ dϕ2)

]
,
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where
a′(t) = ka(t) , K′ = k2K . (5.12)

Let t = t1 be an arbitrary, but fixed time. Choosing k = a−1(t1), we have a′(t1) = 1,
and the metric of the hypersurface t = t1 agrees with (5.9), provided

K′ =
K

a2(t1)
. (5.13)

This yields the claim as t1 is arbitrary. The above argument also shows that K is
not the curvature of space, which is given by (5.13) at time t1. The corresponding
radius is

R′ =
a(t1)√
|K|

.

Hence, in the Robertson–Walker space-time, the geometry of space is time
dependent.

The function a(t) and the constant K do not have any direct physical meaning,
as their values can be changed by a coordinate transformation. This is somewhat
annoying. In many textbooks, this freedom is excluded by restricting K to its three
standard values −1, 0, and +1. However, this breaks the freedom (5.12) only for
K �= 0. The description of the cosmological models is then discontinuous at K = 0.
This is particularly unfortunate if it should turn out that our universe is described by
a model with K = 0. But today this seems likely to be the case.

Thus we want to restrict the freedom differently, in the same way for all cases.
We proceed similarly as Traschen and Eardley [6] and normalize the scale factor
so that

a(t0) = 1 (5.14)

for the time t0 today. Then K has the meaning of today’s space curvature. In prin-
ciple, this is a measurable quantity and cannot be changed by a coordinate trans-
formation. The transformation (5.12) is no longer just a coordinate transformation;
it translates “today” to where a′ = 1. This preserves the geometry of space-time.
The method of Traschen and Eardley is based on the fact that the Robertson–Walker
space-times are time dependent and look differently to cosmic observers at differ-
ent times.

The space curvature K can be an arbitrary real number. If K > 0, the model is
called closed, if K = 0 spatially flat (or flat), if K < 0 hyperbolic, and K ≤ 0 open.
The scale factor a(t) is an arbitrary function of t which satisfies condition (5.14).
Thus space can either expand or contract and the evolution is determined by the
equations of motion (Einstein’s equations).

What mathematical properties characterize the metric (5.11)? Let ξ̄ k(r,ϑ ,ϕ) be
a Killing vector field of the metric (5.9) and define

ξ 0(t,r,ϑ ,ϕ) = 0, ξ k(t,r,ϑ ,ϕ) = ξ̄ k(r,ϑ ,ϕ) .

Then ξ μ(t,r,ϑ ,ϕ) is a Killing vector field of (5.11) (exercise). Thus the Robertson–
Walker space-times have at least as much symmetry as the 3-spaces. One can show
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that (5.11) describes all spaces characterized in this way [2]. However, the metric
(5.11) may have more symmetry. One example is Minkowski space-time, which
results from setting K = 0 and a = const in (5.11).

Le us make one remark about dimensions. In cosmology, t and r have the dimen-
sion of length (c = 1!), whereas a, ϑ , and ϕ are dimensionless.

5.2.2 Cosmic Rest System

For general functions a(t), the isometry group of the space-time (5.11) agrees
with the isometry group of the 3-spaces t = const. Thus it is smaller than that of
Minkowski space-time. This can be expressed in the following way. For each point
p in space-time, the images of p with respect to all transformations in the isom-
etry group of (5.11) yield the hypersurface t = const containing p. Hence, these
hypersurfaces are the orbits of the isometry group and thus determined uniquely
(and geometrically). In Minkowski space, the x0 = const hypersurfaces also have
six-dimensional symmetry, but the family x0 = const is not uniquely determined, as
a boost will change it to another one.

This implies that Robertson–Walker space-times with isometry group no larger
than six-dimensional symmetry have a cosmic rest system {ea(p)} in every point p,
the frame with time axis orthogonal to this hypersurface. In coordinates t, r, ϑ , ϕ ,
we have

eμ0 (t,r,ϑ ,ϕ) = (1,0,0,0) .

The observers with 4-velocity e0 are called the cosmological observers. It is only
these observers who perceive the universe as homogeneous and isotropic.

By what we said about the CMB before, our universe may not have more sym-
metry than homogeneity and isotropy. Such a thermal radiation defines a rest frame
in each point (it is only isotropic in this frame). Thus the rest frame has to agree with
the cosmic rest system. This opens up the possibility to determine the cosmic rest
system. Indeed, this has been undertaken. In 1986, it was found that the CMB de-
viates weakly from perfect isotropy and that this deviation has the form of a dipole
(cosα), with respect to the rest frame of the Earth. This deviation corresponds to
a motion of Earth with speed vEarth ≈ 361kms−1 relative to the preferred frame.
Subtracting the velocity of the Earth within our galaxy, one obtains

vGalaxy ≈ 500kms−1 .

This is a surprisingly large speed.
Besides this, the CMB is isotropic and thermal to a very high accuracy. In 1992,

the satellite COBE (COsmic Background Explorer) measured the CMB [3]. The
results of these measurements give that the fluctuations about isotropy, subtracting
out Earth’s motion, are merely of the relative magnitude of

ΔT
T

≈ 10−5
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and that the temperature is

T = 2.726±0.01K ,

with a spectrum closer to that of black-body radiation than one could generate in a
laboratory. The fluctuations of isotropy can be measured much more accurately. Its
structure contains information about the early universe.

5.2.3 Cosmological Redshift

If a′ �= 0, then cosmological observers have a non-vanishing relative velocity. This
relative motion exhibits a (positive or negative) redshift of their light signals. Let us
calculate this redshift.

To this end, consider a light signal traveling along a light-like geodesic, param-
eterized by the functions t(κ), r(κ), ϑ(κ), and ϕ(κ). Assume that light is emitted
at κ1 and received and analyzed at κ0 (Fig. 5.3). Let κ be a physical parameter (cf.
page 44), so that the vector (ṫ, ṙ, ϑ̇ , ϕ̇) is the 4-momentum of light. Thus

ṫ = hν ,

where ν is the frequency of light with respect to the preferred frame at each point
on the ray, in particular at the beginning and the end. The redshift z is defined by

z =
λ0 −λ1

λ1
,

Fig. 5.3 Redshift and
time dilation between two
cosmological observers

λ1

xμ(λ)
t1+dt1

t1

u1
μ
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μ

t0+dt0

λ0 t0
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or

z =
ν1 −ν0

ν0
=

ṫ1 − ṫ0
ṫ0

. (5.15)

We can calculate the relation of ṫ1 to ṫ0 from the geodesic equation. This is the
Euler–Lagrange equation for the Lagrangian (2.15)

L = (1/2)ṫ2 − (1/2)a2g̃kl ẋ
kẋl ,

where g̃kl is the metric in square brackets on the right-hand side of (5.11). Note
that here xk corresponds to the coordinates r, ϑ , and ϕ . The corresponding Euler–
Lagrange equations are

ẗ +aa′g̃kl ẋ
kẋl = 0 , (5.16)

ẍm +2a′a−1ṫ ẋm + Γ̃m
kl ẋ

kẋl = 0, (5.17)

where Γ̃m
kl are the Christoffel symbols of the metric g̃kl . In addition, a light-like

geodesic satisfies

ṫ2 −a2g̃kl ẋ
kẋl = 0 . (5.18)

Substituting this into (5.16), we get

ẗ +a′a−1ṫ2 = 0 ,

which simply implies that
aṫ = const .

Thus (5.15) becomes

z =
1−a1

a1
. (5.19)

This is the general and exact formula for the cosmological redshift. Thus the redshift
is given by the quotient of the scale factors a0 = 1 at the time of receiving, and a1

at the time of emission, and independent of the history in between. From (5.19)
we infer that the redshift is positive in an expanding universe (and negative in a
contracting one), as expected. Equation (5.19) can be used to measure the scale
factor at time t1. We have

a1 =
1

1+ z
.

The index 0, used in this calculation, has a special meaning in cosmology. It
labels the quantities which refer to the present. We will adopt this convention sub-
sequently.

Another important property of the Robertson–Walker metric is the connection
of the redshift and the distance. For small distances, we can deduce a simple rule.
Equation (5.18) implies the following relation between the spatial distance d, de-
fined by

ds2 = a2g̃kldxkdxl ,
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and the time dt, needed by the light signal to traverse this distance

ds = dt .

For infinitesimal distances, we thus obtain from (5.19) that

dz =
dλ
λ

=
da
a

=
a′

a
dt =

a′

a
ds .

Defining the Hubble constant H by

H =
(

1
a

da
dt

)

t0

=
(

da
dt

)

t0

,

we obtain Hubble’s law:
dλ
λ

= H ds . (5.20)

Its content is that the redshift is proportional to the distance. As it is written, (5.20)
only holds for infinitesimal distances, but the implied relation is approximately true
for small finite distances. Here “small” can be understood as “small compared to
the cosmological radius a/

√
|K|”. This holds in particular for our observations. To

measure the Hubble constant, we plot the redshift z of galaxies as a function of their
distance, yielding the so-called Hubble diagram, cf. Fig. 5.4. The measurements
[7, 8] give

H = 65±10 kms−1Mpc−1

(Pc is “Parsec” = 3.26 light years; Mpc = 106 pc is the typical distance between
galaxies). The difficulties are the motion of the galaxies (cf. the speed of our local
group of galaxies is 500kms−1) and the measurement of the distances.

5.2.4 Cosmological Horizons

In the first part of these Notes, we mostly considered the local structure of space-
time. Small enough neighborhoods are sufficiently similar to Minkowski space. We

Fig. 5.4 The idea of Hubble
diagram. The blobs represent
values of individual galaxies.
The tangent of the best-fit
straight line is the Hubble
constant. For a plot of a real
measurement, see [7, 8]
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now start to consider space-time as a whole. This so-called global structure will
be surprisingly different from Minkowski space. One of the key aspects is what is
called the causal structure, that is which events can be influenced by which other
events. For example, which parts of the universe are visible for a cosmological ob-
server? Into which parts of the universe can a cosmological observer send signals?

Consider an observer B. Of which events can he know when he reaches the point
p on his trajectory? These events are obviously constrained by the past light cone at
p. On the other hand, an observer starting his life at p can only influence the events
in space-time contained in the future light cone of p (Fig. 5.5).

Let us calculate the location of the light cones in Robertson–Walker space-time.
To this end, it is best to rewrite the Robertson–Walker metric in the following way:

ds2 = a2(t)
(

dη2 − dr2

1−Kr2 − r2dϑ 2 − r2 sin2ϑ dϕ2
)

,

where

dη =
dt

a(t)
.

We say that two metrics gμν and g′μν are conformally related (or that g′μν is a con-
formal deformation of gμν ) if g′μν(x) = F(x)gμν(x) for a positive function F(x).
Thus the Robertson–Walker metric is conformally related to the metric in paren-
theses above. One can show that the light-like geodesics agree for two conformally
related metrics (not the autoparallels as the affine parameter is different). Thus the
path of light with respect to the coordinates η , r, ϑ , and ϕ is independent of a(t).
The metric in parenthesis is that of a static space-time. For K > 0, we have topology
R×S3, for the topology is K ≤ 0 R

4, and K = 0 gives Minkowski space.
Consider the observer with trajectory r = 0. This observer represents all possible

cosmological observers due to complete homogeneity. The radial light rays through
the point η = η0 on its trajectory satisfy the equations

Fig. 5.5 The region that can
be observed before point p
is reached, and the region
that can be influenced starting
from point p

p

observer

can be observed

can be influenced
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ϑ = ϑ0, ϕ = ϕ0 ,

η̇2 − ṙ2

1−Kr2 = 0 .

The latter equation can be solved readily:

r = ±SK(η−η0) , (5.21)

where SK(η) = K−1/2 sin(K1/2η) for K > 0, SK(η) = (−K)−1/2sinh[(−K)1/2η ] for
K < 0, and SK(η) = η for K = 0. Thus the light cone of the point with η = η0 and
r = 0 is determined. The upper sign holds for the future and the lower sign for the
past light cone.

These light cones are obviously not very important boundaries. The observer can
wait a little longer until his trajectory passes the point p, and his “horizon” will
expand. Similarly, the observer could send a signal before p, and thus influence a
larger region. It is an interesting question, whether such extensions can be made
without restriction. Consider the simple case K = 0 (the other cases are similar). In
this case, we have the usual light cones of Minkowski space with coordinates η , r,
ϑ , and ϕ . The t-dependence of η is given by

η(t) = η0 ±
∫ t

t0

dτ
a(τ)

.

The crucial point is that this integral can converge if t approaches a “boundary”
of the universe. This can happen in three different cases. First, a(t) could remain
regular and positive in the whole interval t ∈ (−∞,∞), but

|ηs| := lim
t=±∞

∣∣
∣∣

∫ t

t0

dτ
a(τ)

∣∣
∣∣< ∞ ,

or second, a(ts) = 0 for a finite ts and

|ηs| := lim
t=ts

∣∣
∣∣

∫ t

t0

dτ
a(τ)

∣∣
∣∣< ∞ ,

or third a(ts) = ∞ for a finite ts, in which case certainly |ηs| < ∞. Then the
Robertson–Walker space-time is represented by a subset of Minkowski space, deter-
mined either by η >ηs or by η <ηs or both. In the first case, we have a well-defined
future light cone of the point η = ηs, r = 0 in space-time. Its surface is called par-
ticle horizon of the particle at the trajectory r = 0. In the second case, there is a
well-defined past light cone of the point η = ηs, r = 0 in the space-time. Its surface
is called event horizon of the observer on the trajectory r = 0 (cf. Fig. 5.6).

The particle horizons can be a serious problem in cosmology: vast parts of the
universe cannot be influenced by certain particles. Thus large portions of the uni-
verse cannot interact with each other. But how can the same density, the same tem-
perature, etc. be established, given these circumstances? On the other hand, the event
horizons imply that an observer cannot observe certain parts of the universe. Then
large parts of nature might be beyond our perception.
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η

ηs1

ηs2

H1 H1

H2

T2

H2T1

Fig. 5.6 Particle horizon H1 of trajectory T1 and event horizon H2 of trajectory T2

Whether such horizons exist is determined only by the behavior of the function
a(t), which results as a solution of the Einstein equations.

5.2.5 Einstein Tensor of the Robertson–Walker Space-Time

We can read the components of the affine connection for the metric (5.11), which
we write in the form

ds2 = dt2 −a2g̃kldxkdxl ,

from (5.16) and (5.17):

Γ0
kl = aa′g̃kl , Γk

0l =
a′

a
δ k

l , Γm
kl = Γ̃m

kl , (5.22)

where the Γ̃m
kl are the Christoffel symbols of the metric g̃kl . This implies (exercise):

G00 = 3a−2 (a′2 +K
)
, (5.23)

Gkl = −
(
2aa′′ +a′2 +K

)
g̃kl . (5.24)

We shall need these expressions to write down the Einstein equations. For K = 0,
we see that although the 3-spaces are flat, the space-time itself can be curved.

5.3 Cosmic Dynamics

5.3.1 Friedmann–Lemaı̂tre Equations

In this section we shall write the Einstein equations for the Robertson–Walker metric
and discuss the resulting dynamics. Before we do so, we want to make some general



172 5 Cosmological Models

remarks about the task of solving the Einstein equations. We best compare it to
solving the Maxwell equations. The Maxwell equations are linear and thus one can
find a standard solution once and for all, preferably in the form of a Green’s function.
Then, given a source in Minkowski space, the solution is given by an integral of
the product of the source and the Green’s function. In contrast, first, solutions of
the Einstein equations cannot be decomposed into a linear combination of other
solutions. Second, we cannot determine a source without knowing the metric, as any
distribution of mass needs the information on how far the individual mass elements
are away from each other. The method for solving the Einstein equations, that is
often used [9], is to assume a symmetry of the solution, and then solve the equations
for both fields—metric and stress-energy tensor—simultaneously. Of course, that
works only for large symmetry groups, but this will be always the case in these
Notes. Another tack has also been successful recently: numerical methods [10].

To apply our solution method, we have to characterize the stress-energy tensor
of matter in more detail. We assume that it has the form (3.58) of an ideal fluid.
Furthermore, matter should have the same symmetry as the metric, that is the rest
frame of the fluid should agree with the cosmic reference frame, or uμ = (1,0,0,0)
(with respect to the coordinates t, r, ϑ , ϕ), and the scalar fields ρ and p should be
constant along the t = const. hypersurfaces, ρ = ρ(t), p = p(t). Substituting these
values into (5.23) and (5.24) and invoking the Einstein equations (4.8) yields two
independent equations, best written in the following form:

a′′ = −4πG
3

(ρ+3p)a+
Λ
3

a , (5.25)

a′2 +K =
8πG

3
ρa2 +

Λ
3

a2 . (5.26)

Another important equation is the energy equation (3.60). In our special case, it can
be written as

(
a3ρ

)′
+ p

(
a3)′ = 0 . (5.27)

If a′ �= 0, then only two of these equations are independent. Equations (5.25), (5.26),
and (5.27) are called Friedmann–Lemaı̂tre equations; in the case Λ = 0, they are
called Friedmann equations. They determine the equations of motion, provided we
specify an equation of state p = p(ρ).

5.3.2 Cosmic Acceleration

Let us study (5.25), and set Λ = 0 for now. On the left-hand side, we have the ac-
celeration a′′ of cosmic expansion. On the right-hand side, there is the source term
ρ+3p multiplied by a negative number. If the source is positive, then expansion de-
celerates, or contraction accelerates. An interpretation of this fact is that gravitation
is attractive for a positive source and repulsive for a negative one. The new feature
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is that the pressure enters the source term. This is necessary in relativity, since pres-
sure and mass density can be mixed by a boost. Observe the following interesting
fact.

Assume that the system is contracting, a′ < 0, with ρ > 0 and p > 0. The posi-
tivity of the term ρ + 3p then implies that a′ becomes even more negative and the
contraction accelerates. Furthermore, the contraction has the tendency to increase
the values of ρ and p. Here, mass density partly increases directly by contraction
and partly indirectly by the work done by the contraction against p. These changes
overweight the simultaneous decrease of a in (5.25). Apparently, the energy is trans-
formed into mass by gravity, and the energy of gravity becomes more and more
negative. This results in an instability, which can lead to collapse.

For normal states of matter, we have the inequalities

ρ ≥ 0, p ≥ 0 ,

as the existence of negative mass would allow the construction of a “perpetuum
mobile”, and negative pressures are thermodynamically unstable. (The construction:
form a mass-dipole from a positive and a negative mass. Simple calculations based
on Newtonian theory imply that the dipole moves with an acceleration that agrees
with the direction of the dipole.)

The assumption that matter is always in such a normal state has an interesting
implication. In this case, the graph of the function a(t) is convex (Fig. 5.7). Thus if
a′ > 0 today, the graph must intersect the t-axis in the past. There we have a = 0,
that is a singularity (infinite curvature and density). This Big Bang could not have
happened before the time Δt = a′−1(t0) = H−1

0 . Δt is known as the Hubble time and
gives an upper bound for the age of the universe (under the given assumptions). The
Hubble time is approximately 15× 109 for the Hubble constant 65kms−1 Mpc−1.
It is an interesting fact that the known ages of rocks or astronomic systems (e.g.,
globular clusters of galaxies) are smaller or comparable to the Hubble time [2].

Consider the Λ-term in (5.25). If Λ > 0, then the deceleration of the universe
is decreased, and if it dominates, we have acceleration. Then the above argument

Fig. 5.7 A convex curve a(t).
The Hubble time Δt = t0 − t1
is upper bound to the age of
the Universe t0

t1 t0

1

a

a(t)

t0
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is invalid. Indeed, this idea was suggested by Lemaı̂tre many years ago, as first
observations gave a value for the Hubble constant so small that not even Earth’s
age of 4.5 billion years would fit into the corresponding Hubble time. Today, the
value of Λ is determined by an independent measurement. We will return to this
later.

The cosmological constant Λ is frequently expressed by the corresponding en-
ergy density ρΛ. We can move the Λ-term to the right-hand side of the Einstein
equations and consider it as the effective stress-energy tensor T μνΛ . Then in the cos-
mological rest frame (and any other orthonormal frame):

T μνΛ =
Λ

8πG

⎛

⎜⎜⎜
⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞

⎟⎟⎟
⎠

.

Thus T μνΛ has the form of an ideal fluid (3.57) with

ρΛ =
Λ

8πG
, pΛ = − Λ

8πG
, (5.28)

and it is called dark energy today. Whether this notion is just a mathematical anal-
ogy, or describes something real, is not clear at the moment (2007).

5.3.3 Linear Equations of State

The simplest equation of state is p = 0. Matter with this equation of state is called
dust or incoherent matter. Sometimes we say that the “cold” matter has this equation
of state. This means that single pieces or particles of the matter are massive, have
small (non-relativistic) velocities, and massless particles can be neglected (“cold
non-relativistic matter”). For example, today’s galaxies can be viewed as this kind
of dust.

We can also imagine that matter may be “hot”. The massive particles have rela-
tivistic velocities and their dynamics is practically the same as for massless particles,
or there are only massless particles. The equation of state of hot matter is

p =
1
3
ρ .

Both equations of state are linear and can be written in the general form

p = (γ−1)ρ , (5.29)

where γ = 1 for dust and γ = 4/3 for radiation. We can choose γ in the range between
1 and 2, so that 0 ≤ p ≤ ρ . It can be shown that the sound speed of matter with
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p > ρ is greater than the speed of light, hence the upper bound. Equation (5.27)
then becomes

ρ ′a3 +3γρa2a′ = 0

or
ρ ′a3γ +3γρa3γ−1a′ = 0

with the solution ρa3γ = const. Obviously, the meaning of the constant on the right
is today’s matter density ρ0, and the result can be written in the following form:

ρ =
3M
8πG

a−3γ . (5.30)

Inserting into (5.26) yields that

a′2 −Ma−3γ+2 −La2 = −K (5.31)

where L = Λ/3.
The cosmological models that are usually studied, consist of three components

with negligible mutual interaction. Then the stress-energy tensor of each compo-
nent is conserved by itself and (5.30) holds separately for each component with the
corresponding values for M and γ . The first of these components is dark energy. Its
energy density ρΛ is independent of the scale factor a (at least during the cosmo-
logical epoch). Non-relativistic matter is the second component. Its energy density
satisfies (5.30) with γ = 1 and some constant M, as if it was the only matter in the
universe. Finally there is the radiation with density ρ , described by γ = 4/3.

Observe that the dependence of the three densities on a is different. This can lead
to different roles for the three sorts of matter for very small or very large values of
a. For small enough values of a, radiation dominates, and for very large values of a,
the dark energy dominates. This holds independently of the values of the constants
Λ and M.

5.3.3.1 Horizons

Let us consider the question of horizons. We will keep in mind that for a → 0 ra-
diation dominates, whereas in the case a → ∞, the dark energy dominates. For the
radiation model (γ = 4/3), (5.31) takes the form

a′2 = Ma−2 −K +La2 .

If a → 0, then on the right-hand side, the first term dominates:

a′2 ≈ M
a2 .

This implies
a = (4M)1/4√t ,
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and

η(t) =
(

4
M

)1/4√
t → 0.

Hence there are horizons, particle horizons at the Big Bang, and event horizons at
the Big Crunch.

In the other case, if a→∞, then the last term dominates. We obtain a∼ exp(
√

Lt)
and the integral will converge for Λ > 0. A detailed study of exact solutions will
confirm these estimates.

5.4 Parameterization of Physically Distinct Models

We study the properties of solutions to (5.31). These properties represent predictions
from general relativity about cosmology. Equation (5.31) uniquely determines the
Robertson–Walker geometry for given constants γ , M, K, and L, as the constant of
integration depends on the origin of the time scale and is meaningless. To see this,
we use separation of variables to write the equation in the form

dt =
da√

Ma−3γ+2 +La2 −K
. (5.32)

Thus the constant of integration represents a translation of the time coordinate t.
This is simply a coordinate transformation which does not affect physical properties.
Hence the space of physically distinct solutions is four-dimensional. The ranges of
the four parameters are γ ∈ [1,2], M ∈ (0,∞), K ∈ (−∞,∞), and L ∈ (−∞,+∞).

The integral on the right-hand side of (5.32) can be expressed in terms of ele-
mentary functions, if K = 0 for all γ , if L = 0 for γ = 1 or γ = 4/3, and if γ = 4/3.
However, all important qualitative properties of the integral can be determined in
the general case in a different way.

5.4.1 Qualitative Discussion of the Dynamics

Let us define that the zeros, the divergences, and the extrema of a function are its
qualitative properties. We shall study these properties subsequently of a(t). To this
end, rewrite radial equation (5.30) in the following form:

(
da
dt

)2

+V (a) = −K , (5.33)

where
V (a) := −Ma−3γ+2 −La2
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is the so-called effective potential. Equation (5.33) has the well-known form of the
energy integral of the dynamical equation for non-relativistic motion of a point mass
with mass 2 and total energy −K along the a-axis subject to the action of the po-
tential V (a). The qualitative discussion is based on this Newtonian analogy (cf. the
discussion of the perihelion shift, Sect. 2.9.2). Consider the following cases.

1. Λ< 0
In this case, Fig. 5.8 shows the diagram of V (a). V is monotone increasing from
V = −∞ at a = 0 to V = ∞ at a = ∞, since 3γ − 2 > 0. The possible orbits are
determined by the part of the horizontal curves E =−K which lie above the potential
curve. All of these curves start at a = 0 (Big Bang), reach a maximal a, the so-called
turning point, at aU , where

V (aU ) = −K,

then turn around and return to a = 0. The time line in Fig. 5.9 is symmetric around
the turning point. That is, the function a(t) satisfies the equation

a(t − tU ) = a(tU − t) . (5.34)

In this case, the result is that all models with K ∈ (−∞,∞) evolve from Big Bang to
Big Crunch in finite time. Such solutions are called recollapsing.

Fig. 5.8 Effective potential
V (a) in the case of Λ < 0.
Trajectory I corresponds to
K < 0, II to K = 0, and III to
K > 0
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aUI
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Fig. 5.9 A typical
t-dependence of the scale
factor a in the case Λ< 0

�

�
a

aU

tU
t

2. Λ= 0
Then

V (a) = − M
a3γ−2 .

The diagram in Fig. 5.10 shows that there are two sub-cases:
K > 0: the model is closed, recollapses as above, and satisfies (5.34).
K ≤ 0: the model is open and expands for all times to a → ∞ (cf. Fig. 5.11).
The results in this case are the following:

1. Closed models recollapse,
2. Open models start at the Big Bang and expand for all times to a → ∞. These

models are called eternally expanding.

3. Λ> 0
The V -diagram is completely different (Fig. 5.12). The V -curve has a maximum
VMax at aMax. A simple calculation yields

aMax =
[

M(3γ−2)
2L

] 1
3γ

, VMax = − 3γL
3γ−2

[
M(3γ−2)

2L

] 2
3γ

. (5.35)

�

�
−K

V (a)

I

0
II

a

III

Fig. 5.10 Effective potential V (a) in the case of Λ = 0. Trajectory I corresponds to K < 0, II to
K = 0, and III to K > 0
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Fig. 5.11 The t-dependence of the scale factor a in the case Λ = 0. The meaning of the curves I,
II, and III is explained by Fig. 5.10
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a

III
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V

aU aU

VI

Fig. 5.12 Effective potential V (a) in the case of Λ> 0. Trajectory I corresponds to −K > VMax, II
and III to −K < VMax, IV, V, and VI to −K = VMax

We have to distinguish three cases.
−K > VMax. Then the trajectory with E = −K does not meet the potential curve.

These models start at the Big Bang and expand for all times to a → ∞. They are of
the eternally expanding kind.
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Fig. 5.13 The t-dependence of the scale factor a in the sub-case −K =VMax ofΛ> 0. The meaning
of the curves IV, V, and VI is explained by Fig. 5.12

−K = VMax. We have to separate into three sub-cases:

1. The model starts at the Big Bang and expands for all times not to infinity, but to
the value a = aMax (cf. Fig. 5.13).

2. The model is static with a = aMax. It is unstable, as it lies at a maximum of the
potential curve.

3. The model starts at a = aMax for t →−∞ and expands for all times to a → ∞.

Thus the former two cases are models without Big Bang, but they do not seem to be
important, as they are limit cases and not generic.

−K < VMax. We have two sub-cases:

1. a < aMax and all models recollapse and satisfy (5.34).
2. a > aMax and all model contract from a → ∞ as τ →−∞, reach a turning point,

and expand to a →∞. These are also models without Big Bang, but this time they
are generic (Fig. 5.14).

In summary, the parameter space of K, L, and M is divided into three open do-
mains. The first contains the recollapsing models, the second one the eternally ex-
panding models, and the third one the models without Big Bang. On the boundaries
of these domains, less interesting models lie.

5.4.2 Density Parameters

Let us now assume that γ is given. The parameters K, L, and M refer to a whole
solution in the sense that each value of the 3-tuple determines a solution, and each
solution a value of the 3-tuple. As the solutions are not static, we cannot observe the
parameters directly. They are only accessible via measurable momentary quantities.
Here, the “moment” can very well last 1000 years. This is why we want to express
the global parameters in terms of others, which are simpler to measure.

One example for such a parameter is the Hubble constant H. We need two addi-
tional parameters. The Hubble constant, or its absolute value,
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Fig. 5.14 The t-dependence of the scale factor a in the sub-case −K �=VMax ofΛ> 0. The meaning
of the curves I, II, and III is explained by Fig. 5.12

|H| = |a′| ,

has the dimension of length−1 (since c = 1). Other momentary parameters can thus
be made dimensionless. It turns out that it is favorable to choose dimensionless pa-
rameters. We multiply each quantity with non-trivial dimensions by powers of G
and the Hubble constant to produce a dimensionless quantity.1 These relative quan-
tities and their properties are calculated from the theoretical model. The momentary
values are then multiplied by the suitable power of the Hubble constant, before com-
paring them to the observations. This is a common procedure, which has been used
for a long time in cosmology. The “complete” Hubble constant H contains another
information, which is the sign of a′:

sgn(a′) = sgn(H) .

If a blueshift of the galaxies is observed, then this means that we are in the contract-
ing phase of cosmological history with a′ < 0.

A popular method is based on the so-called relative (momentary) densities ΩM

and ΩΛ, which we define and describe in the following. To this end, we rewrite the
Friedmann–Lemaı̂tre equation (5.26) for t = t0 as follows:

K =
8πG

3

(
ρM +ρΛ−

3
8πG

a′2
)

. (5.36)

1 This only works if H �= 0, but these cases are the interesting ones.
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All terms in parenthesis have the dimensions of mass density. This allows us to
define the so-called critical density:

ρc :=
3

8πG
a′2 . (5.37)

Why is ρc called “critical”? Rewrite (5.36) using the critical density:

K =
8πG

3
[(ρM +ρΛ)−ρc] .

The term in parenthesis is the total density, including dark energy. If this is larger
than the critical density, then K > 0 and space is positively curved. If it is equal to
the critical density, then space is flat, and if it is smaller than the critical density, then
space is negatively curved. Thus the critical density is the value of the total density
which forces the space to be closed.

Now we can introduce dimensionless parameters, by relating all densities to the
critical one:

ΩM :=
ρM

ρc
, ΩΛ :=

ρΛ
ρc

.

These are called density parameters or simply Ω-parameters. We see that they are
an example of the method outlined above. Division by the critical density is little
more than multiplication by the Hubble constant to the power −2 and with G to
the power 1, as (5.37) shows. The parameters H, ΩM , and ΩΛ have one property in
common. They depend on cosmic time t and are not constant as K, L, and M.

Expressed in Ω-parameters, the Friedmann–Lemaı̂tre equations for t = t0 have a
simple form. Equation (5.26) can be written in the form

K = a′2(ΩM +ΩΛ−1) ,

whereas (5.25) becomes

q =
3γ−2

2
ΩM −ΩΛ ,

with

q := − a′′

a′2
.

The current value of q is called deceleration parameter. In cosmology, it is common
practice to express cosmic acceleration in terms of this dimensionless parameter.

We can compute all other quantities from ΩM , ΩΛ, and H. From the definition of
the parameters and the densities, we infer that

ΩM =
M
H2 , ΩΛ =

Λ
3H2 . (5.38)

Conversely, from γ , H, ΩM , and ΩΛ, we can compute the parameters K, L, and M,
which distinguish the solutions, as well as the momentary values of a and a′:

K = (ΩM +ΩΛ−1)H2, L =ΩΛH2, M =ΩMH2 , (5.39)
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or
Λ= 3ΩΛH2 , (5.40)

and, for the sake of completeness,

a = 1 , a′ = H . (5.41)

The dimensions of these quantities can now be deduced from the powers of H in the
previous equations.

5.4.3 The Ω-Diagram

In this section, we construct a map, the regions of which represents different mo-
mentary data. This is a two-dimensional diagram with axesΩM andΩΛ. It is increas-
ingly popular to present certain properties of these models in form of a Ω-diagram,
as most of them are independent of H.

We start by adding the lines corresponding to the values K = 0 and q = 0,
Fig. 5.15. It is clear that these curves are boundaries of important subsets. Above
the first curve, there are the closed models as K > 0 there, and the open models
are below this curve. Similarly, above the second curve, there are the models which
accelerate (q < 0), and below the curve are the decelerating ones.

ΩΛ

0

ΩM2( )

ΩM1( )

=const

q = 0

ΩMK = 0

G

F

E

DC

B

A

Fig. 5.15 Omega diagram with the regions of open, accelerating, eternally expanding models (A),
open, decelerating, eternally expanding ones (B), open, decelerating, recollapsing ones (C), closed,
decelerating, recollapsing ones (D), closed, decelerating, eternally expanding ones (E), closed,
accelerating, eternally expanding ones (F) and models without Big Bang (G)
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It turns out that each dynamical type can be found in a certain region of the
Ω-diagram. In other words, the dynamical type is uniquely determined by the values
of ΩM and ΩΛ and independent of H. The underlying reason is the behavior of the
Einstein equations with respect to scaling (exercise).

At first, ΩΛ < 0 is equivalent to Λ < 0, and thus all points there correspond to
the momentary states of the recollapsing models. Let us divide the region ΩΛ > 0
into K < 0 and K ≥ 0. The first subset contains only states of eternally expanding
models. The second one contains three generic types: eternally expanding models
for −K >VMax, recollapsing ones for −K <VMax and 1 < aMax, and models without
Big Bang for −K < VMax and 1 > aMax.

Substituting for VMax and aMax from (5.35) and using (5.41) and (5.39) for a and
K, we obtain

−K
VMax

=

[

A
(ΩM +ΩΛ−1)3γ

Ω2
MΩ

3γ−2
Λ

] 1
3γ

, (5.42)

with

A =
(

3γ−2
3γ

)3γ ( 2
3γ−2

)2

,

and
1

aMax
=
(

2
3γ−2

ΩΛ
ΩM

) 1
3γ

. (5.43)

We see that H cancels everywhere. Thus the above conditions determine well-
defined regions in the Ω-diagram.

The eternally expanding models in the region ΩΛ > 0 and K > 0 satisfy the
condition −K > VMax in the form

VMax

−K
> 1 .

This yields
Ω2

MΩ
3γ−2
Λ > Aε3γ , (5.44)

with

ε =ΩM +ΩΛ−1 > 0 .

Consider the left-hand side of (5.44) along the line ε = const between the points
ΩM = 0 and ΩΛ = 0. There we have

ΩΛ = ε+1−ΩM , ΩM ∈ (0,ε+1)

and we turn to study the function

f (ΩM) =Ω2
M(ε+1−ΩM)3γ−2



5.4 Parameterization of Physically Distinct Models 185

in this interval. At the endpoints, we have

f (0) = f (ε+1) = 0 ,

and in the interior of the interval, f is positive. There, it has a single maximum with

ΩMax =
2
3γ

(ε+1) < ε+1 ,

and the maximal value is

fMax = A(ε+1)3γ .

Obviously we have

0 < Aε3γ < fMax ,

and thus the equation
f (ΩM) = Aε3γ

always has two solutions, which we denote by ΩM1(ε) and ΩM2(ε). The eternally
expanding models are in the interval (ΩM1(ε),ΩM2(ε)). For the recollapsing models
and the models without Big Bang, we are left with the intervals (0,ΩM1(ε)) and
(ΩM2(ε),ε+1). The former have to satisfy the inequality 1 < aMax, that is, in view
of (5.43):

ΩΛ <
3γ−2

2
ΩM ,

which obviously holds in the interval (ΩM1(ε),ε+1).
To get some idea of how the curves run near their endpoints, we study its behavior

along the line ε = 0. The boundary curve starts there at the point p+ ≡ (ΩM =
0,ΩΛ = 1) and p− ≡ (ΩM = 1,ΩΛ = 0), as the equation for the boundary curve is

Ω2
MΩ

3γ−2
Λ = Aε3γ , (5.45)

and these two points satisfy this equation for ε = 0. We try to capture the behavior
of the boundary curve at p+ by the power series

ΩM = x(ΩΛ−1)y + . . .

where x > 0 and y > 0. Substituting into (5.45) yields for the leading terms:

Ω3γ−2
Λ (ΩΛ−1)2y = A

[
1+(ΩΛ−1)y−1]3γ

(ΩΛ−1)3γ .

We thus have to set
2y = 3γ .

Then the limit of both sides is non-trivial and yields

x2 = A .
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Finally,
ΩM =

√
A(ΩΛ−1)3γ/2 ,

and since 3γ > 2, the boundary is tangential to the axis ΩM = 0 at p+.
Similarly, near the point p− we set

ΩΛ = x(ΩM −1)y

and obtain
ΩΛ = A

1
3γ−2 (ΩM −1)

3γ
3γ−2 .

Hence the boundary is tangential to the axisΩΛ = 0 at p−. The three generic models
lie in the three distinguished regions of the Ω-diagram, whereas the non-generic
ones lie on the boundaries.

5.4.3.1 The Age of the Universe in the Ω-Diagram

For all models with Big Bang, the age TA can be defined as the proper time from the
Big Bang a = 0 to the present a = 1.

To compute TA, we return to (5.32) and define the function T (K,L,M,a) (γ is
considered fixed) by

T (K,L,M,a) :=
∫ a

0

dα√
Mα−3γ+2 +Lα2 −K

. (5.46)

The models with Big Bang either expand for all times or recollapse. For the eternally
expanding models, we simply have

TA = T (M,K,L,1) .

For the recollapsing models, the situation is more complicated. The turning point
aU is the smallest zero of the function f (a) = Mα−3γ+2 +Lα2−K, so that f (a) > 0
for all a ∈ (0,aU ). The graph of the solution is symmetric around aU , and the value
of a does not exceed aU . Thus we have

1 ≤ aU

and
TU (M,K,L) ≥ T (M,K,L,1) ,

where
TU (M,K,L) = T (K,L,M,aU )

is the time from the Big Bang to the turning point.
We have to distinguish two cases. Either H > 0, then a = 1 is in the first half and

again
TA = T (M,K,L,1)
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or H < 0 and a = 1 lies in the second half. By symmetry around the turning point,
we have

TA = 2TU (M,K,L)−T (M,K,L,1) .

The information whether present day is in the interval (0,TU ) or (TU ,2TU ) is given
by sgn(H). Using the sign function, we can write the following general formula:

TA = [1− sgn(H)]TU + sgn(H)T (M,K,L,1) .

The age has dimensions of length, and a handy dimensionless quantity arises by
multiplication with the Hubble constant H. The physical interpretation is that we
measure the real age in the corresponding Hubble time. Thus define

χ := |H|TA .

A simple calculation yields

χ(M,K,L,H) = [1− sgn(H)]|H|TU (M,K,L)+ sgn(H)|H|T (M,K,L,1) .

Substituting for M, K, and L in view of (5.39), we infer

|H|T (M,K,L,1) =
∫ 1

0

dα
√
ΩMα−3γ+2 +ΩΛα2 −ΩM −ΩΛ+1

(5.47)

and

|H|TU (M,K,L) =
∫ aU

0

dα
√
ΩMα−3γ+2 +ΩΛα2 −ΩM −ΩΛ+1

.

The value of aU , the root of the equation f (a) = 0, is independent of H, since

f (a) = H2 (ΩMα−3γ+2 +ΩΛα2 −ΩM −ΩΛ+1
)

.

Thus, we can draw the curves
χ± = const

in the Ω-diagram, these are the so-called isochrones. In recollapsing models, there
are two sorts of isochrones, one for each of the two signs of H.

Under the assumptions that γ is fixed, that we are at the point (ΩM,ΩΛ), and
that the Hubble constant has a certain value, we can determine the age of this point.
A figure showing isochrones with the respective times for H = 63 can be found
in [7, 8].

5.4.4 Luminosity Distance and the Measurement of Λ

Many measurements of cosmological parameters, like the Hubble constant or the de-
celeration parameter q, rely on distance measurements. What we mean by “distance”
has to be carefully defined. In most cases, “distance” means luminosity distance. It
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can be defined as follows. The definition here is slightly simplified, first in compar-
ison to astronomic conventions, but also compared to some cosmologists (who built
curvature corrections into the definition [2]).

Assume that space (and space-time) is flat, and that a source of radiation has total
power dE/dt. In distance R of the source, the radiation illuminates the area 4πR2.
Let Ls denote the apparent luminosity, that is the corresponding current of energy
per area element:

Ls =
dE/dt
4πR2 .

On the other hand, we can define the absolute luminosity La as the energy current
through a sphere with radius 1 (astronomers use 10 Parsec here) around the source:

La =
dE/dt

4π
.

Then

R =

√
La

Ls
.

For our purposes, the luminosity distance DL can be defined by the same formula
in general. In particular, we can use this definition in curved and time-dependent
cosmological space-times:

DL :=

√
La

Ls
.

For sources with known absolute luminosity, we can simply measure the apparent
luminosity and compute the luminosity distance with the formula above. Roughly
speaking, this is the common procedure. It does not make much sense to introduce
curvature corrections for the Euclidean formula, since there is no unique way to
define distances in Robertson–Walker space-time. In any case, it is not necessary, as
any distance function, the values of which can be measured in the real cosmos on
the one hand and computed from the model on the other, will serve our purposes.

The sources with known absolute luminosity which are bright enough to be ob-
served at large distances are relatively sparse. Thus, in astronomy, they are called
standard candles. The so-called Cepheid variables and supernovae of class IA are
standard candles, which are presently used with some confidence. The Cepheid vari-
ables are periodically varying stars. There are two kinds of them, and only one of
them is a reliable source [11, 12]. We will not discuss any further details here. The
supernovae IA originate as a type of the so-called white dwarfs. These are stars of
mass less than 1.2 solar masses, which used up their fuel. As their mass is relatively
small, they can withstand gravitational collapse. If such a white dwarf is a com-
ponent of a binary star system, and accretes mass from the second star, the critical
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value of 1.2 solar masses can eventually be exceeded, and the star begins to collapse.
As the white dwarfs in the supernovae IA primarily consist of carbon and oxygen,
the collapse ignites a nuclear reaction at once throughout the star. The result is a
gigantic explosion—the supernova [10].

Let us calculate the “theoretical” luminosity distance. It will depend on the
model, but also on the time of measurement in the model and the redshift of the
source. Consider the Friedmann–Lemaı̂tre model with parameters γ , ΩM , ΩΛ, and
H. Assume that the source is at r = 0 and t = t1, follows the trajectory of a cosmolog-
ical observer B1, and radiates the power dE1/dt1. The energy per second measured
at r = r0 and time t0 by a cosmological observer B0 is subject to two redshifts. First,
the redshift of the energy of each photon, which leads to the equation

dE0 = dE1a1 .

Second, the time of arrival of the photons at the cosmological observer B0 is
blueshift. If the times t0 and t1 are connected by light rays, so that t0(t1) is the
time of arrival of a light ray at B0, where t1 is the emission time at B1 (Fig. 2.4),
then we have

dt0 = dt1/a1 .

The values of the scale factor at the moment of reception and emission are 1 and a1,
respectively (exercise). We infer

dE0/dt0 = a2
1(dE1/dt1) .

This energy is distributed uniformly on the area 4πr2
0. Thus we obtain for the appar-

ent luminosity that

Ls = a2
1

dE1/dt1
4π r2

0

.

This yields the simple formula:

DL = r0/a1 . (5.48)

We see that DL has the dimension of length. The corresponding dimensionless
quantity dL is defined by (assuming H > 0)

dL := HDL ,

or

dL =
Hr0

a1
.

We want to express the right-hand side in terms of the Ω-parameters and z. In
general, this can only be done numerically. What we can do however is to show that
the right-hand side does not depend on H. Indeed, a1 can be expressed in terms of
the redshift,

α1 =
1

1+ z
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and the value of r0 can be computed from (5.21):

Hr0 = HSK(η0 −η1) ,

where

η0 −η1 =
∫ t0

t1

dt
a(t)

=
1
H

∫ τ0

τ1

dτ
β (τ)

,

τ = Ht and β (τ) = a(τ/H). The function SK(η) satisfies the identity:

xSK(η/x) = SK/x2(η)

for arbitrary x > 0. Thus we infer

Hr0 = SK/H2

(∫ τ0

τ1

dτ
β (τ)

)
.

This can depend on H only via the value of τ . The times τ0 and τ1 are given by the
function T (K,L,M,a),

τ0 = HT (K,L,M,1) , τ1 = HT

(
K,L,M,

1
1+ z

)
,

and β (τ) solves the equation

τ = HT (K,L,M,β )

for β . Therefore (5.47) shows that the three functions on the right-hand side of the
equations are independent of H.

This implies that the dimensionless luminosity distance dL is a function of ΩM ,
ΩΛ, and z only (again γ is assumed to be fixed),

dL (ΩM,ΩΛ,z) .

If we measure one source, we obtain the values of z and dL . The theoretical function
dL (ΩM,ΩΛ,z) then yields a relation between ΩM and ΩΛ, which can be drawn
as a curve in the Ω-diagram. Multiple measurements yield multiple curves, which
determine a region in the diagram [7, 8].

Further independent measurements and assumptions about the surface of the last
scattering yield that K ≈ 0. This and the measurements described previously result
in the following values:

ΩM0 ≈
1
3
, ΩΛ0 ≈

2
3

.

Today we assume these values as valid.
This implies that we are currently in the Λ-dominated phase of an eternally ex-

panding model and that the universe has been in a phase of accelerated expansion
for some time.
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5.4.5 The Friedmann Models

In this section we discuss the special case Λ = 0, and we consider only models
dominated by dust (γ = 1), or radiation (γ = 4/3). They describe the cosmological
evolution in the case that the contribution of Λ is negligible compared to M. These
models were formerly used as the standard models, but they are not only historically
relevant. In this case, (5.31) has the following exact solutions:

1. Dust (γ = 1):

a =
M
2K

(
1− cos

√
Kη

)
, (5.49)

t =
M

2K3/2

(√
Kη− sin

√
Kη

)
. (5.50)

This solution is valid for all K ∈ (−∞,∞), provided the expressions on the right-
hand side for K = 0 are interpreted as limits K → 0, and if

√
K = i

√
|K| is used

for K < 0.
2. Radiation (γ = 4/3):

a =
√

t
(

2
√

M−Kt
)

. (5.51)

The solutions for K = 0 are sometimes called Einstein–de Sitter models.

5.5 Space-Times with Maximal Symmetry (10 Killing Fields)

Another important special case is M = 0. In this case, ρ = p = 0, (5.27) is satisfied,
and (5.25) and (5.26) simplify to

a′′ = La , (5.52)

a′2 −La2 = −K . (5.53)

We use the freedom (5.12), to transform K to +1, 0, or −1. In the subsequent dis-
cussion, we allow only these values for K.

Depending on the value of Λ, we distinguish three cases.

5.5.1 Minkowski Space-Time

Set Λ = 0. Then (5.53) implies that K = 0 or K = −1. For K = 0, we obtain a =
const. The corresponding Robertson–Walker metric becomes

ds2 = dt2 −a2 (dr2 + r2dΩ2) .
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This is Minkowski space, with inertial coordinates xμ transformed in the follow-
ing way

x0 = t, xk = arnk ,

where nk is given by (5.5).
For K = −1, (5.53) yields that a′ = ±1 or a = ±t, and the Robertson–Walker

metric is

ds2 = dt2 − t2
(

dr2

1+ r2 + r2dΩ2
)

.

This is the metric in the interior of the light cone of the origin in Minkowski space.
To see this, transform the inertial coordinates xμ as follows

x0 = t
√

1+ r2, xk = trnk .

For t > 0 (t < 0) the coordinates t, r, ϑ , and ϕ only cover the interior of the future
(past) light cone since

(x0)2 −�x ·�x = t2 > 0 .

Hence, the pseudo-spheres are the surfaces of constant Minkowski interval from the
origin. This space-time is sometimes called Milne model (Fig. 5.16).

5.5.2 de Sitter Space-Time

de Sitter space-time plays a prominent role in the inflation era of cosmology. Fur-
thermore, it is likely the geometry that our universe approaches at late times and a
popular toy of theoretical physics. Thus we will study its geometry in some detail.

For Λ �= 0, we obtain from (5.52) that

a = c+ exp
(√

Lt
)

+ c− exp
(
−
√

Lt
)

, (5.54)

T

X

t = const

O

Fig. 5.16 Milne model. The cosmological time t and the trajectory of a cosmological observer O
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and from (5.53) that

c+c− =
K
4L

. (5.55)

Equation (5.55) means that only one of the integration constants is arbitrary. The
invariance of (5.52) and (5.53) with respect to time translations t → t + t1 enables
us to use the remaining freedom to transform the constant to some standard value.

Assume further that Λ > 0 and introduce the shorthand R = 1/
√

|L|. The expo-
nents in (5.54) are real, and (5.55) has the real solutions c+ and c− for all K. Let us
begin with K = 1 and choose c+ = c− = 1/(2λ ). We obtain

a = R cosh(t/R) .

The integration constant is chosen such that the minimal radius is attained at t = 0.
In this case, the Robertson–Walker metric (5.11) has the form

ds2 = dt2 −R2 cosh2(t/R)
[

dr2

1− r2 + r2 (dϑ 2 + sin2ϑ dϕ2)
]

. (5.56)

The coordinates have the ranges t ∈ (−∞,∞), r ∈ [0,1), and (ϑ ,ϕ) ∈ S2 (and thus
only cover half of the space-time). We can cover the whole space-time (except the
poles) by replacing the coordinate r by χ := arcsinr and let χ ∈ (0,π). We obtain
the metric

ds2 = dt2 −R2 cosh2(t/R)
[
dχ2 + sinχ

(
dϑ 2 + sin2ϑ dϕ2)] .

The metric (5.56) is called de Sitter metric. Its exponential expansion again shows
how unstable gravitation is. Arbitrarily large space with a constant energy density
can be created.

The causal structure of de Sitter space-time can be exposed by a conformal de-
formation. We write the metric in the form

ds2 = R2 cosh2(t/R)
(
dη2 −dχ2 − sin2 χ dΩ2) ,

where

η =
∫

dt
Rcosh(t/R)

= arctansinh(t/R) .

This implies that

sinh(t/R) = tanη cosh(t/R) =
1

cosη

and
t = R arcsinhtanη .

For t ∈ (−∞,∞), the values of η cover the interval (−π/2,π/2). The light cones of
the points with r = 0 and η = ±π/2 (horizons) are given by (cf. (5.21)):
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Fig. 5.17 Penrose diagram of
de Sitter space-time. Every
point is a sphere of radius
sinχ . The dashed lines are the
horizons

−π/2

π/2

0

η

χ

χ = ±(η∓π/2) .

Figure 5.17, which illustrates the causal structure of de Sitter space-time, has
been drawn with a frequently used method. This method only works for rotation-
ally symmetric models, but nearly all models in these Notes are so. Every point
represents a sphere (S2) with radius sinχ . Light-like rotationally symmetric hyper-
surfaces (light cones of the points with r = 0) are represented by lines of slope 1, that
is χ = ±(η −η0). Later we will see more such diagrams. They are called Penrose
diagrams.

The horizons meet at η = 0,r = 1. Let us calculate the metric on such a horizon.
We use the functions η , ϑ , and ϕ as coordinates along the horizons. The embedding
functions are

t =
1
λ

arcsinhtanη ,

χ = ±η−π/2 ,

θ = ϑ ,

φ = ϕ .

Then we have

ds2 = −R2 (dϑ 2 + sin2ϑ dϕ2) .

This is a degenerate metric, since the coordinates on the hypersurface are η , ϑ , and
ϕ , but the metric only contains two terms, one with dϑ and another one with dϕ .
Such a hypersurface is called light-like (we will give a proper definition and discuss
properties in the next chapter). The space-like sections η =const of the “cone” are
spheres with constant radius 1/λ .



5.5 Space-Times with Maximal Symmetry (10 Killing Fields) 195

de Sitter space-time can be visualized as a four-dimensional hypersurface in five-
dimensional Minkowski space. The metric of the embedding space-time is

dS2 = dT 2 −dU2 −
(
dX1)2 −

(
dX2)2 −

(
dX3)2

, (5.57)

and the equation of the hypersurface is

T 2 −U2 −
(
X1)2 −

(
X2)2 −

(
X3)2

= −R2 . (5.58)

The hypersurface is described by the endpoints of space-like radial vectors of con-
stant length λ−1 (Fig. 5.18). Hence it has a large symmetry group, the whole
“Lorentz group” of five-dimensional Minkowski space (5.57). This space-time con-
tains 10 mutually orthogonal 2-planes, thus the group has 10 generators (10 dimen-
sions), 4 boosts, and 6 rotations. This group is denoted by SO(1, 4) and called de
Sitter group [4].

We want to show that the induced metric on the hyperboloid (5.58) agrees with
(5.56). To this end, we find out to which point (T,U,Xk) of the embedding space a
point (t,r,ϑ ,ϕ) is mapped. This yields the embedding formulas,

T = T (t,r,ϑ ,ϕ), U = U(t,r,ϑ ,ϕ), Xk = Xk(t,r,ϑ ,ϕ) .

The (t = const)-surfaces of de Sitter space-time are 3-spheres. They result as sec-
tions of the hyperboloid with the T = const planes. Thus we try T = T (t), or better

T = R f (t) (5.59)

U

T

X

p

M1 M2

S2

H1

C1

C2

S1

H2

Fig. 5.18 Three-dimensional de Sitter space-time represented by the intersections M1, M2 with the
(T,U)-plane and S1 with the (X ,U)-plane. The particle horizon of the trajectory M1 is the event
horizon of the trajectory M2 and consists of two straight lines H1 and H2. The light cone of the
point p is composed of the two straight lines C1 and C2
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with a yet undetermined function f (t). Let us determine the geometry of the sec-
tions. To this end, substitute (5.59) for T into the equation of the hyperboloid (5.58),
and obtain

U2 +∑
k

XkXk = R2 (1+ f 2(t)
)

. (5.60)

This is the equation of a 3-sphere of radius λ−1
√

1+ f 2(t). As we already know
the embedding formulas for the 3-sphere, we obtain the spatial part of the metric
(5.56). It is (5.4) with U = X4, U = ±a(t)

√
1− r2, and Xk = a(t)rnk where on the

one hand

a(t) = Rcosh(t/R)

to get (5.56) and on the other hand

a(t) = R
√

1+ f 2(t) ,

to satisfy equation (5.60). Therefore we set

f (t) = sinh(λ t).

Altogether, this yields

T = R sinh(λ t) ,

U = ±R
√

1− r2 cosh(λ t) ,

Xk = Rr cosh(λ t)nk .

The sign + (−) gives the right (left) half of the hyperboloid (Fig. 5.18). From the
derivation, it is clear that these functions satisfy (5.58) for all values of t, r, ϑ , and
ϕ , and inserting these functions into (5.57) yields (5.56).

Inserting the horizon equations

t = R ,arcsinhtanη , r = cosη ,

into the embedding formulas, we obtain

T = R tanη ,

U = ±R tanη ,

Xk = Rnk .

Thus the horizons are the sections of the hyperboloid with the light-like planes T ∓
U = 0 (Fig. 5.18).

Equation (5.55) is also valid for K = 0. This yields a foliation of de Sitter space-
time with Euclidean planes, which is advantageous for some applications. Let c− =
0 and c+ = 1/λ , so that
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a = Ret/R ,

and the Robertson–Walker metric becomes

ds2 = dt2 −R2e2t/R (dr2 + r2dΩ2) . (5.61)

For this metric, we obviously have

a′

a
=

1
R

,

and the Hubble constant is indeed constant.
We now turn to prove the following claim. The embedding formulas describing

the metric on the hyperboloid are obtained by intersecting it with the family of light-
like planes (Fig. 5.18).

T −U = ±Ret/R .

Each plane is defined by a constant t. As t ∈ (−∞,∞), these planes range from
T −U = 0 to T −U = ±∞. Inspired from (5.61), we set

Xk = Rr et/Rnk

and obtain via (5.58) that

T +U = ±R
(

r2et/R − e−t/R
)

.

This yields the embedding formulas. The resulting metric indeed agrees with (5.61).
We see that the sections are E

3, and that they converge to the horizon T −U = 0 in
the limit t →−∞. Furthermore, this horizon is the boundary of the region covered
by these coordinates (one half of de Sitter space-time!).

Equation (5.55) is also valid for K = −1, which provides a foliation of de Sitter
space-time with pseudo-spheres. To this end, let c+ = −c− with c+ = R/2, so that

a = Rsinh(t/R) ,

and

ds2 = dt2 −R2 sinh2(t/R)
(

dr2

1+ r2 + r2dΩ2
)

. (5.62)

The embedding formulas leading to this metric are obtained by intersecting the hy-
perboloid with the time-like planes (Fig. 5.18)

U = Rcosh(λ t) .

Again, each t ∈ (0,∞) yields a plane. We let

Xk = Rr sinh(t/R)nk ,
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obtain from (5.58) that

T = R
√

1+ r2 sinh(t/R) ,

and, after some calculation, the metric (5.62). This metric covers the region of the
hyperboloid bounded by the light cone

T 2 −
(
X1)2 −

(
X2)2 −

(
X3)2

= 0

of the point P with T = Xk = 0 in the plane U = R in the five-dimensional space-
time. This plane is the usual Minkowski space with coordinates T and Xk and the
metric dS2 = dT 2 − (dX1)2 − (dX2)2 − (dX3)2. The above light cone also lies on
the hyperboloid and is a light cone there, namely that of P. Note that this light
cone arises as the intersection of the hyperboloid with the plane tangential to the
hyperboloid at P. As all points of the hyperboloid can be obtained from P by a
symmetry, which leaves tangential planes tangential, we infer the following general
statement. The light cone of a point Q in the hyperboloid is the intersection of the
hyperboloid with its tangential plane in Q.

We found that there are parts of de Sitter space-time, which are Robertson–
Walker space-times for each value of K. This bears the following significance. Each
K-type of Robertson–Walker space-time can converge to de Sitter in the limit t →∞.

Yet another, but very important coordinate system in de Sitter space-time can be
obtained as follows. Consider the planes

T coshτ−U sinhτ = 0

for all constant τ . These are (T,U)-boosts of the plane T = 0 (Fig. 5.18). That is, the
planes τ = const are mapped to each other by a sub-group of the symmetry group
of the hyperboloid. The previous equation can be satisfied by

T = R
√

1−ρ2 sinhτ , (5.63)

U = R
√

1−ρ2 coshτ , (5.64)

where we introduced another coordinate ρ . Equation (5.58) yields

�X ·�X = ρ2R2 ,

that is
Xk = Rρnk . (5.65)

Substituting (5.63), (5.64) and (5.65) into (5.57) leads to

ds2 = R2
[(

1−ρ2)dτ2 − dρ2

1−ρ2 −ρ2dΩ2
]

.

This is a static metric. It is singular at ρ = 1, and the coordinate regions τ ∈ (−∞,∞),
ρ ∈ (0,1), and (ϑ ,ϕ) ∈ S2 cover quadrant I of de Sitter space-time (Fig. 5.17).
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5.5.3 Anti-de Sitter Space-Time

We set Λ< 0 and define R := 1/
√
−Λ. Then the solution (5.54) is only real valued

if c− = c∗+. That is, (5.55) has only a solution for K = −1. It is

a = Rcos(t/R) ,

where we arranged t = 0 so that the scale factor has its maximum there. For K =−1,
(5.11) yields the metric

ds2 = dt2 −R2 cos2(t/R)
[

dr2

1+ r2 + r2 (dϑ 2 + sin2ϑ dϕ2)
]

. (5.66)

This is the metric of the so-called anti-de Sitter space-time. This metric is regular in
the finite interval t/R ∈

(
−π

2 , π2
)

and, at first, it looks like a recollapsing cosmology.
Again, this metric can be found on a highly symmetric hypersurface. The em-

bedding space is five-dimensional and has the flat metric

dS2 = dT 2 +dU2 −
(
dX1)2 −

(
dX2)2 −

(
dX3)2

. (5.67)

The equation of the hypersurface is (Fig. 5.19)

T 2 +U2 −
(
X1)2 −

(
X2)2 −

(
X3)2

= R2 . (5.68)

Again the symmetry group of this hypersurface is 10-dimensional. It is the group of
“rotations” around the origin in the embedding space with metric (5.67). It is called
anti-de Sitter group and is denoted by the symbol SO(2, 3) [4].

Fig. 5.19 Two-dimensional
anti-de Sitter space-
time represented by the
intersections M1, M2 with
the (T,X)-plane and S1 with
the (T,U)-plane. The future
light cone of the point p is
composed of the two straight
lines L11 and L12. Similarly,
the past light cone of the point
q is formed by L21 and L22

X

T

U

p

q

M1

M2

S2

L12

L21 L22

L11

S1
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We obtain the metric (5.66) by intersecting the hyperboloid with the planes T =
const. The corresponding embedding formulas are

T = R sin(t/R) ,

U = ±R
√

1+ r2 cos(t/R) , (5.69)

Xk = Rr cos(t/R)nk . (5.70)

The coordinates t, r, ϑ , and ϕ only cover the part of the hyperboloid with T ∈
[−R,R]. We thus assume these formulas to be valid only in the corresponding
interval

−Rπ/2 < t < Rπ/2 , (5.71)

where in addition a �= 0. The hypersurfaces t = ±Rπ/2 are given by T = ±R in
the embedding space (Fig. 5.19). Inserting these values into (5.68), we find that
the region (5.71) is bounded by the following two light cone halves in the planes
T = ±R:

U2 −
(
X1)2 −

(
X2)2 −

(
X3)2

= 0 , T = ±R, U > 0 . (5.72)

Again, the planes T = ±R are Minkowski space-times with time coordinate U . The
intersections with the hyperboloid with these spaces are the light cones in these
space-times (the interior corresponds to |U | > |X |). These intersections also lie on
the hyperboloid and play the role of the light cones of the points with T = ±R and
U = Xk = 0 there. Furthermore, we have a characterization of the intersection of the
light cone of an arbitrary point analogous to de Sitter space. Thus the coordinates
t, r, ϑ , and ϕ only cover the region of the hyperboloid (5.68) bounded by the two
light cones (5.72). Note, the hypersurfaces t = const, where the constant varies in
the range (5.71), are complete pseudo-spheres that do not intersect the light cones
of the points (±R,0,0,0).

In the limit t → π
2λ , all t-curves meet in the vertices U = Xk = 0 of these light

cones. This is the reason why a vanishes (Fig. 5.19). This follows from (5.69) and
(5.70).

However, even the hyperboloid is not the whole anti-de Sitter space-time. Note
that the embedding implies the existence of closed time-like curves (acausality!).
However, this is only a property of the embedding. To construct the actual anti-de
Sitter metric, we introduce new coordinates on the hyperboloid covering it com-
pletely. Let us try the planes T cosτ−U sinτ = 0:

T =
Rsinτ
cosχ

, U =
Rcosτ
cosχ

,

where τ ∈ (0,2π) and χ ∈ [0,π/2). Then

T 2 +U2 =
R2

cos2 χ
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and (5.68) leads to
Xk = R tanχnk .

In these coordinates, the metric becomes

ds2 = R2
[

dτ2

cos2 χ
− dχ2

cos2 χ
− tan2 χ dΩ2

]
. (5.73)

This is a static space-time. The hyperboloid results from the assumption that τ be
periodical, that is by identifying the points with τ = 0 and τ = 2π . We do not have
to do this to the metric (5.73), and define instead: the whole anti-de Sitter space-
time is given by the metric (5.73), where the coordinate ranges are τ ∈ (−∞,∞),
χ ∈ [0,π/2), and (ϑ ,ϕ) ∈ S2. This produces a causal space-time.

Introduce the following conformal deformation:

ds2 =
R2

cos2 χ
[
dτ2 −dχ2 − sin2 χ dΩ2] .

The last two terms in brackets equal the metric on a three-dimensional sphere (S3)
(cf. (5.6)), but χ ∈ [0,π/2) yields only a half 3-sphere from the pole to the equator.
Thus the space-time has a time-like boundary, for each τ a 2-sphere, namely the
equator of the 3-sphere τ = const.

Consider the Penrose diagram of this space-time (Fig. 5.20) with the conformally
deformed metric

ds2 = dτ2 −dχ2 − sin2 χ dΩ2 .

The hypersurface τ = 0 lies between two light cones L1 and L2 asymptotic to it. L1

is given by χ = τ+π/2 and L2 by χ = −τ+π/2. For T this means

T =
Rsinτ

cos(±τ+π/2)
= ±R .

Fig. 5.20 Penrose diagram
of anti-de Sitter space-time.
The Cauchy horizons of the
hypersurface τ = 0 are L1 and
L2. The diagram is endless in
the future and past directions

−π/2

0

π/2

τ

L1

L2

π/2 χ

∞
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These two light cones are called Cauchy horizons of the hypersurface τ = 0 (for
details on Cauchy horizons, see [11]).

5.6 The Early Universe

Sometimes modern cosmology is called “Big Bang cosmology”, as the Big Bang is a
dominant feature and a well-established assumption. Therefore, a frequent question
is about the beginning of the universe and the reason for this huge explosion. These
considerations are also motivated by the fact that the corresponding Friedmann–
Lemaı̂tre model leads to very special initial conditions in several aspects. These are
the so-called problems of special initial conditions: (1) horizons, (2) flatness, and
(3) entropy. We will discuss these problems in turn.

5.6.1 Horizon Problem

Today, the cosmic microwave background has negligible interaction with the rest
of matter (hydrogen gas is transparent, etc.), and thus forms a closed component
of the whole system. For radiation in equilibrium, the Stefan–Boltzmann law im-
plies ρrad ∼ T 4

rad. Together with the equation ρrad = (3M/8πG)a−4, this leads to the
relation

Trada = const .

In combination with today’s temperature, this implies that at the scale factor aR =
1500−1, the temperature of the radiation reached the so-called recombination tem-
perature TR = 4500K at which hydrogen becomes ionized. Above TR we have an
opaque mixture of protons and electrons—plasma. The hypersurface t = tR is the
so-called surface of last scattering (Fig. 5.21). The CMB observed today was emit-
ted by part of the surface of last scattering. Denote the volume of this part of the
surface by VR0 and its radius by RR0. On the other hand, we have the particle hori-
zons intersecting the surface. Define the horizon radius as the radius of the volume
bounded by a particle horizon at t =const. A simple calculation yields that

RH(tR) � RR0 .

This calculation is based on the assumption that the radiation-dominated Friedmann
model is a good approximation for the epoch before recombination. This means,
if the Friedmann model is valid up to the beginning, then the particles in different
regions of VR0 cannot interact. But then, how did they “come to know” that they
all should have the same temperature? This problem can only be solved by a very
special initial condition, which is objectionable.
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T

Fig. 5.21 Surface of the last scattering t = tR. The particle horizon radius RH is to be compared
with the radius of the part of the surface visible to an observer B

5.6.2 Flatness Problem

The values that we obtain from direct measurements of the parameter ΩM lie in the
interval (0.2,4). This is very close to the value 1. The dynamics of the Friedmann–
Lemaı̂tre model exhibit a strong instability of ΩM . As soon as K �= 0, ΩM quickly
diverges away from 1.

To illustrate this instability, we restrict ourselves to a very simple example, a
radiation-dominated Friedmann model. For all other models, there are similar re-
sults, which are more difficult to obtain. The scale factor is given by (5.51). Equa-
tion (5.30) yields the definition of ΩM (where we have to compute at an arbitrary
time):

ΩM =
ρ
ρc

=
M

a2a′2
.

A simple calculation gives

ΩM(t) =
(

1− Kt√
M

)−2

.

We see that ΩM starts at 1 for all K, but diverges quickly if K �= 0. Assume that
K = −1, then the condition ΩM > 1/5 implies

1+
K√
M

1017 <
√

5 ,

where we used that t0 = 1010 J or t0 = 1017 s = 1025 m. This requires
√

M/K > 1017

s. Thus at the beginning, it should be already determined that
√

M/K is comparable
to the age of the universe today. This is unnatural as at that time a natural time scale
was given by the Planck time 10−33 s. Hence, right at the beginning, it would have to
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be known that the germ of the universe grows to a large cosmos. It is more desirable
to find a natural process, which determines the value of K/

√
M.

5.6.3 Entropy Problem

The entropy Srad of radiation in a volume V is

Srad =
32
45
π5k
h3c3 V (kT )3 ,

where we set the Boltzmann constant to 1. Estimating the number of baryons in
the same volume results in 109 entropy per baryon. Hence, we live in a hot universe.
These numbers stay the same, as all processes are adiabatic and preserve the number
of baryons. This rises the question where that heat came from.

5.6.4 Cosmic Inflation: Orders of Magnitude

An important idea that is believed to solve these problems and to explain the driving
force of the Big Bang is called cosmic inflation [14]. It is based on de Sitter model:
the scale factor grows exponentially while the mass density remains constant. This
enables formation of a macroscopic piece of matter from a microscopic one in a
very short time interval. Still, energy is conserved, as the necessary work is done by
the negative pressure and gravity (write energy equation (3.59) for ρΛ and pΛ).

From where do we obtain the cosmological constant needed? It turns out that
quantum fields can possess several ground states, each being stable only within a
specific interval of temperatures similar to the well-known phases of ordinary mat-
ter. The temperature at which the stability properties of quantum fields change is
again called the critical temperature, Tc. And again, there can be an energy-density
jump between such ground states as there is one for ordinary phase transition of
second kind, called latent heat. The jump is oriented so that it is negative if the
temperature decreases through the critical value.

We can therefore imagine the following picture. If the temperature decreases and
the higher energy ground state persists as a meta-stable state for some time interval
Δt at temperatures lower than Tc, there is an effective vacuum energy density ρvac

equal to the jump. Quantum field theory yields two numbers [14]

ρvac ≈ (1015 GeV)4

and

Tc ≈ 1015 GeV .

The density ρvac provides the desired cosmological constant.
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During the time Δt—the inflationary epoch—the vacuum energy density ρvac of
the false vacuum dominates the matter. In the beginning, since radiation has the
same temperature, ρrad is comparable to ρvac. But the radiation is diluted quickly. It
would be sufficient that Δt ≈ 10−33 s.

We use powers of GeV as our units (h̄ and c are 1). Then the magnitudes of
the transformation relations are useful 1GeV ≈ 10−27 kg ≈ 1016 m−1 ≈ 1024 s−1,
G ≈ 10−38 GeV−2.

The energy density of vacuum yields an effective cosmological constant,

Λ= 8πGρvac ≈ 1023 (GeV)2 ≈ 1055 m−2 ≈ 1071s−2 .

This is a huge value, compared to the current value of the cosmological constant of
Λ< 10−52 m−2. With this constant and the de Sitter scale factor a ≈ H−1 exp(Ht),
we obtain (H =

√
Λ/3 is roughly 1035 s−1) the scale factor for Δt = 10−33

a(tc +Δt)
a(tc)

≈ 1029 .

In this way, a tiny quantum fluctuation can indeed be blown up to a macroscopic
piece. For example, a very small region with radius of a few Planck lengths
(10−19 GeV−1 ≈ 10−35 m) is inflated to a macroscopic scale ≈ 1010 GeV−1 ≈
10−6 m. The total mass ≈ (1015 GeV)4×(10−19 GeV−1)3 ≈ 10−24 kg becomes con-
siderable ≈ (1015 GeV)4 × (1010 GeV−1)3 ≈ 1063 kg.

The horizon problem can then be solved by the trivial property that the volume
elements of matter move along time-like trajectories and hence can not cross the
horizon. If we thus begin with a small piece of matter, which lies inside the horizon
radius before the inflationary epoch, then during inflation, this piece remains inside
the particle horizon. The resulting volume is then larger than the part of the universe
visible today.

The solution of the flatness problem is obtained from the nice property of de
Sitter space that at any time ΩM +ΩΛ = 1 holds. We have ΩM = 0,

ρΛ =
Λ

8πG

and

ρc =
3

8πG
H2 =

3
8πG

Λ
3

= ρΛ .

At the end of the inflationary epoch, the density of radiation is diluted by the factor
(1029)4, and the total density is very close to the vacuum energy density. Then after
the inflation, the universe starts with ΩM very close to 1!

Finally, the entropy problem can be solved by the latent heat. The large vacuum
energy density decays completely to radiation, which yields enough heat.

The final state of the inflationary epoch is fixed, and practically independent of
what happened before. To keep things simple, we assumed a radiation-dominated



206 5 Cosmological Models

Friedmann model (but with an arbitrary constant K). This assumption can be weak-
ened, for example, we need not assume homogeneity and isotropy.

5.6.5 Quantum Cosmology

The three universal constants G, h̄, and c can be combined to give units of all
physical quantities: the so-called Planck units. For example, the Planck length
LP = G1/2h̄1/2c−1 ≈ 10−34 m, the Planck time TP = LP/c ≈ 10−42 s, and the Planck
energy EP = h̄/TP ≈ 1019 GeV. When physical quantities surpass these horrific val-
ues, one speaks about Planck regime. It seems natural that gravity is to be quantized
in the Planck regime [15]. This could be the case sometime before the inflationary
epoch, and we are in the field of quantum cosmology. Today’s quantum cosmology
is based on the assumption of high symmetry. One utilizes the symmetry to reduce
the degrees of freedom to a finite number. This leads to a form of quantum mechan-
ics, not to a quantum field theory [16].

5.7 Exercises

1. Prove the following properties of the “vector” nk (5.5):

(a) The three vectors nk, mk, and lk (in this order) form a positively oriented
orthonormal 3-frame, where

mk :=
∂nk

∂ϑ
, lk :=

1
sinϑ

∂nk

∂ϕ
.

(b) Use this result to deduce the following identity
(

�dn · �dn
)

= dϑ 2 + sin2ϑ dϕ2 .

(c) Use this identity to compute the metric (5.6).

2. Calculate the curvature of S3 and P3 in the coordinates r, θ , and φ and show
that

Ri jmn = K(gimg jn −ging jm)

everywhere on S3 and P3. Use the metric

ds2 =
dr2

1−Kr2 + r2 (dθ 2 + sin2 θ dφ 2) ,

and the symmetry. (Consider only one point, the components of the curvature
tensor with respect to a suitable orthonormal basis, and use the isotropy to
determine the number of independent components of the curvature tensor.)
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3. Prove that if ξ̄ k(r,ϑ ,ϕ) is a Killing vector field of the metric (5.9) then
ξ μ(t,r,ϑ ,ϕ) is a Killing vector field of the metric (5.11), where

ξ 0(t,r,ϑ ,ϕ) := 0, ξ k(t,r,ϑ ,ϕ) := ξ̄ k(r,ϑ ,ϕ) .

4. Show that the Einstein tensor of the metric ds2 = dt2−a2g̃kldxkdxl has the form

G00 = 3a−2 (a′2 +K
)

,

Gkl = −
(
2aa′′ +a′2 +K

)
g̃kl .

Hint: compute Γμνρ from the geodesic equation. Then collect the terms with g̃kl

and use the formula

R̃klmn = K(g̃kmg̃ln − g̃kng̃lm) ,

where R̃klmn is the curvature tensor of the 3-metric g̃kl .
5. On a manifold M let g′μν(x) and gμν(x) be two conformally related metrics:

g′μν(x) = F(x)gμν(x), F(x) > 0 ∀x .

What is the relation of the light-like geodesics of these two metrics, and what
is that of the corresponding affine parameters?

6. A scale class contains all metrics that can be obtained from one of them by
a scale transformation. These are the conformal transformations with con-
stant factors. Show (1) all Robertson–Walker metrics can be divided into scale
classes and (2) all space-times of a scale class have the same dynamical
type.

7. Assume that the scale factor a(t) is the solution of (5.31) with constants K, L,
and M. How do we have to transform these constants in order to ensure that the
scale factor ā(t), obtained from a scale transformation, solves (5.31) with the
transformed constants?

8. Compute the distance between two given cosmological observers at time t0
in a Robertson–Walker model with a(t) = a1 + a2t + a3t2 with two different
methods:

(a) geodesic distance in the hypersurface t = t0,
(b) radar reflection time.

9. Consider the points with ΩΛ = 0 (Λ = 0) in the Ω-diagram. Compute (a) the
age function χ and (b) the scale-free luminosity distance dL .

10. A two-dimensional model of de Sitter or anti-de Sitter space-time results from
the embedding formulas

dS2 = dT 2 −
(
dX1)2 −

(
dX2)2

,

T 2 −
(
X1)2 −

(
X2)2

= −H−2 ,
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and

dS2 = dT 2 +dU2 −dX2 ,

T 2 +U2 −X2 = H−2 ,

(a) Find the symmetry group and the Killing vector fields of the two-dimen-
sional space-times defined this way.

(b) Show that the map (T,X1,X2) �→ (−T,−X1,−X2) in the embedding space
induces an isometry I of two-dimensional de Sitter space-time, and analo-
gously for anti-de Sitter space-time.

11. Prove that each geodesic in the two-dimensional de Sitter space-time, respec-
tively anti-de Sitter space-time, is an intersection of the two-dimensional de Sit-
ter space-time, respectively anti-de Sitter space-time, with a 2-plane through the
origin of the embedding space. (Show that this holds for all geodesics through
one suitably chosen point, and then use symmetry.)

12. Use the result from Exercise 11 to show the following. Let p be a point in the
two-dimensional de Sitter (anti-de Sitter) space-time and let q be a point in-
side (outside) of the light cone of I(p) in the two-dimensional de Sitter (anti-de
Sitter) space-time (the map I is from Exercise 10). Then there does not exist a
geodesic that connects p to q.
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Chapter 6
Rotationally Symmetric Models of Stars

In this chapter we shall construct models of stars, both static and dynamical ones,
including a model of gravitational collapse. We will restrict ourselves to situations
in which rotational symmetry is a reasonable approximation. Much of our attention
will be focused on the so-called Schwarzschild solutions. These are rotationally
symmetric solutions of the Einstein equations. Studying these solutions has led to
significant insights into gravity which are still relevant today.

Similar to our treatment of cosmology, we will concentrate on the geometric
aspects of stars, that is on their gravitational field. The properties of matter in the
stars are represented by the simple equation of state p = p(ρ). The rich details of
the actual matter are of course important for serious star models (for the “Standard
Model of the Sun”, see [1]), but they do not interfere with the qualitative picture of
the gravity part as described here.

In this section we set Λ = 0, as Λ is irrelevant for the astrophysics of stars. We
begin with the treatment of the interior of rotationally symmetric stars.

6.1 Hydrostatic Equilibrium of Non-rotating Stars

6.1.1 Equations of the Hydrostatic Equilibrium

We consider models of static and rotationally symmetric stars consisting of an ideal
fluid. Hence, the metric in the interior of the star has the form (2.91) and solves the
Einstein equations (4.8) with Λ = 0. (It can be shown that a static, ideal fluid with
reasonable equation of state which solves the Einstein equations is automatically
rotationally symmetric. However, the proof is difficult and thus we simply assume
rotational symmetry here [2].) The energy-momentum tensor must also have this
symmetry, that is the 4-velocity of the fluid has to be parallel to the static Killing
vector field. Otherwise static observers could measure energy currents. With respect
to coordinates t, r, ϑ , and ϕ we then have

Hájı́ček, P.: Rotationally Symmetric Models of Stars. Lect. Notes Phys. 750, 209–235 (2008)
DOI 10.1007/978-3-540-78659-7 6 c© Springer-Verlag Berlin Heidelberg 2008
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uμ =
1

√
B(r)

(1,0,0,0) .

The pressure p and the matter density ρ must not depend on t, ϑ , or ϕ:

p = p(r) , ρ = ρ(r) .

We do not specify the equation of state. To get an accurate model of the matter inside
the star many other quantities have to be considered, e.g., temperature, conserved
particle currents, etc. Here we only want to discuss the simplest model and represent
the whole theory of matter by the equation of state.

The Einstein equations take a particularly simple form, if we introduce new func-
tions Φ(r) and m(r) instead of A(r) and B(r). We set

B(r) = e2Φ(r), (6.1)

A(r) =
r

r−2m(r)
. (6.2)

Then the tt- and rr-components of the Einstein equations become

m′ = 4πGr2ρ , (6.3)

Φ′ =
m+4πGr3 p

r(r−2m)
. (6.4)

The r-component of the Euler equation (3.60) is

p′ = −(ρ+ p)Φ′ ,

and by inserting (6.4), we obtain the so-called Oppenheimer–Volkoff equation [3]:

p′ = − (ρ+ p)(m+4πGr3 p)
r(r−2m)

. (6.5)

Equations (6.3), (6.4), and (6.5) (in combination with one or multiple equations of
state) form a complete system for the hydrostatic equilibrium of relativistic stars.
(The Euler equation replaces the ϑϑ -component of the Einstein equations in a sim-
ilar way as the energy (5.27) replaces the rr-component (5.25) in cosmology.) The
resulting equations can be reduced to a system of two ordinary differential equations
for two functions p(r) and m(r).

6.1.2 Conditions at the Center

Equations (6.3), (6.4), and (6.5) form a system of ordinary differential equations of
first order with the independent variable r. Then one value of the desired solution
for a given value of r determines the solution. We make a universal choice for this
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special value of r, namely r = 0. Which values can be assumed by the unknown
functions at the center?

First, consider m(0). The space–time shall be regular in all points with r = 0.
Thus it must be locally flat there, and the surface t = const must not have a conical
singularity at the center. Then the area Fr of a small 2-sphere r = const, t = const
with radius Rr must satisfy the Euclidean condition:

lim
r=0

Fr

R2
r

= 4π .

Fr and Rr have the form

Fr = 4πr2 ,

and

Rr =
∫ r

0
dx
√

A(x) .

Using l’Hospital’s rule, we obtain

lim
r=0

√
Fr

Rr
=
√

4π lim
r=0

1
√

A(r)
.

Hence, the center is only regular provided

lim
r=0

A(r) = 1 ,

which implies

m(0) = 0 . (6.6)

The initial value Φ(0) does not bear any significance. Indeed, changing the function
Φ(r) by a constant is equivalent to a coordinate transformation. To see this, we
introduce a new time coordinate t ′ according to t = t ′eC. Then g00 transforms as
follows:

g′00 = e2Cg00 = e2(Φ+C) .

Hence, Φ(r) is only determined up to an additive constant, as in Newton’s theory.
We fix the initial value in such a way that

Φ(∞) = 0 . (6.7)

There is no condition (apart from p > 0) which restricts the initial value p(0) of
the function p(r), that is the central pressure. For each value of the central pres-
sure, we obtain a different model. Thus, for a fixed equation of state we find a
one-dimensional family of models of stars. We only have to integrate (6.3), (6.4)
and (6.5) with the initial values (6.6), (6.7), and a chosen central pressure. In this
process, how do we know that we have arrived at the surface of the star?
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6.1.3 Conditions at the Surface

Let r = ro at the surface of the star. At ro the following conditions are obviously
satisfied:

1. The density ρ can have a discontinuity at the surface, but the pressure p(r) is
continuous at ro. Otherwise there are infinitely large forces at the surface (the
force is proportional to p′). If we assume that there is vacuum outside of the star,
then we must have p(r) ≡ 0 there. Thus the surface of the star can be identified
with the first zero of the function p(r).

2. The metric induced on each hypersurface r = const is a continuous function of r
at ro. Otherwise one could measure different times or distances below or above
the surface. This implies that the functions r and Φ(r) are continuous at ro.

6.1.4 The Metric Outside the Star

Outside the star we set ρ = p = 0. For arbitrary r we obtain from (6.3) and (6.6) that

m(r) = 4πG
∫ r

0
dxx2ρ(x) .

m(r) is a continuous function of r, which takes a constant value m for r > ro. The
value of m is given by

m = 4πG
∫ ro

0
dr r2ρ(r) . (6.8)

Then (6.4) implies for r > ro

Φ′ =
m

r(r−2m)
. (6.9)

This has the solution

Φ= ln

√
r−2m

r
+Φ0 ,

where the constant Φ0 has to be chosen according to (6.7). Thus the metric outside
the star is of the following form

ds2 =
r−2m

r
dt2 − r

r−2m
dr2 − r2(dϑ 2 + sin2ϑ dϕ2) . (6.10)

This is the so-called Schwarzschild solution and the coordinates t, r, ϑ , and ϕ are
called Schwarzschild coordinates.

The functions A(r) and B(r) are determined completely by the Einstein equa-
tions. Consider these functions in the limit r →∞ and expand them in the powers of
1/r. We obtain
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A(r) =
1

1− 2m
r

= 1+
2m
r

+ · · · ,

B(r) = 1− 2m
r

.

Comparison to the Eddington–Robertson expansion (2.98) and (2.99) yields

−2m
r

= −2α
RG

r
,

0 = 2(β −αγ)
(

RG

r

)2

,

2
m
r

= 2γ
RG

r
.

The first of these equations can be used to determine the mass of the star, as α must
be 1 to result in the correct Kepler orbits. As RG = GM we thus find

M = 4π
∫ ro

0
dr r2ρ . (6.11)

This is the relativistic relation between the matter distribution ρ in the interior of
the star and the mass of the star determined by the properties of the Kepler orbits of
the satellites of the star.

The remaining equations represent the prediction from the Einstein equations for
β and γ , namely,

β = γ = 1 , (6.12)

which is in accordance with observations.

6.1.5 Comparison to Newtonian Gravity

The Newtonian theory of gravity leads to the following equations of hydrostatic
equilibrium:

M′ = 4πr2ρ , (6.13)

Φ′
N = G

M
r2 , (6.14)

p′ = −G
ρM
r2 , (6.15)

where M(r) is the total mass inside the radius r,ΦN the Newton potential, and ρ and
p are the Newtonian matter density and pressure. The quantities ρ , p, and Mtot in
the Newtonian theory can be considered equivalent to ρ , p, and Mtot in the Einstein
theory, as they are defined and measured in the same way.
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Comparing (6.3) and (6.13) shows that mtot = GMtot. In the relativistic theory
Mtot is not simply an integral of ρ over a spatial volume. The solution of (6.13) can
be written as such an integral:

M(r) =
∫

dVNρ ,

where VN is the Newtonian volume element, as

dVN = dr dϑ dϕ r2 sinϑ ,

and ∫ ∫
dϑ dϕ sinϑ = 4π .

The solution of (6.3) has an analogous form:

m(r)
G

=
∫ ∫ ∫

dr dϑ dϕ r2 sinϑ ρ , (6.16)

but the Einstein volume element of the hypersurface t = const is given by the square
root of the determinant of the induced metric,

ds2 = A(r)dr2 + r2 dϑ 2 + r2 sin2ϑ dϕ2 .

Hence,

dVE = dr dϑ dϕ r2 sinϑ
√

A ,

or
m(r)

G
<
∫

dVEρ .

As m(r) > 0, (6.2) yields A(r) > 1, whence dVN < dVE. Nevertheless the quantity
mtot/G is the measurable total mass below the radius ro. The reason of the difference
is, roughly speaking, that in relativity all forms of energy contribute to the total mass
and the contribution of gravity—the binding energy of the star—is negative. Then
the total mass in relativistic theory must be smaller than the sum of the masses inside
the radius r.

Comparison of (6.4) and (6.14) yields that the potential Φ grows faster in r in the
relativistic theory than ΦN in the Newtonian theory. This has two reasons. First, the
pressure contributes to the source term, and second, the mass function m(r) corrects
the denominator. The force p′ must be in equilibrium with gravity and thus must be
larger in the Einstein theory. This can also be seen from the Oppenheimer–Volkoff
equation where besides Φ′ an extra term p occurs in the first factor. Hence, for
relativistic stars collapse is more likely than for Newtonian ones.
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6.1.6 Mass Limits

The equations of hydrostatic equilibrium with certain equations of state lead to
the so-called mass limits. This is the maximal mass that can be reached by a star
with reasonable equation of state. We now want to investigate the reasons for
the existence of such mass. At the same time we will continue our comparison
of the relativistic and the classical theories. An important difference between the
Oppenheimer–Volkoff equation (6.5) and (6.15) is that the pressure p also appears
on the right-hand side of (6.5). This leads to a positive feedback, a large value of the
pressure p increases its own growth toward the center of the star.

These aspects can be illustrated by the simple example of the incompressible
fluid with the following equation of state:

ρ = const . (6.17)

We start by integrating the Newtonian equations (6.13), (6.14) and (6.15). From
(6.13) we obtain

M(r) =
γρ
G

r3

where we set γ = 4πG/3. Substituting into (6.15) yields

p(r) = P− 1
2
γρ2r2 .

Here we expressed the constant of integration in terms of the central pressure
P = p(0).

The radius of the star is reached where p(ro) = 0. This yields the relation

P =
1
2
γρ2r2

o

between P and ro for a given matter density ρ . Then Mtot := (γρ/G)r3
0 satisfies

Mtot =

√
6
πG3

P3/2

ρ2 .

Note that P remains finite for all values of ro. Thus, in principle, ro, and hence
the total mass, can be arbitrarily large. If the pressure in the center is bounded by
the respective realistic (finite) values, the radius ro and thus the total mass is also
bounded according to the above relations (Fig. 6.1). This yields a mass limit even
for the Newtonian theory.

Integrating (6.3) implies that

m(r) = γρr3 .
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Fig. 6.1 Dependence of the
total mass Mtot of the star on
its central pressure P, if the
matter is an incompressible
fluid. MtotN is the Newtonian
and MtotE the relativistic curve

Mtot

P

MtotE

limMtot

MtotN

Then (6.5) becomes

p′ = −γ (p+ρ)(3p+ρ)r
1−2γρr2 .

Integrating this equation via separation of variables yields

3p+ρ
p+ρ

= C
√

1−2γρr2 ,

where C is a constant of integration, which can be expressed in terms of P:

3P+ρ
P+ρ

= C .

This determines ro to be

ro =

√
2
γρ

P(2P+ρ)
(3P+ρ)2 <

√
1

2γρ

and Mtot (Fig. 6.1),

Mtot =

√
6

πρG3

[
P(2P+ρ)
(3P+ρ)2

]3/2

.

Consider the function Mtot
(
P
)
. For relatively small values of the central pressure

P � ρ ,

(which can actually be quite large), we have

Mtot =

√
6
πG3

P3/2

ρ2

(
1−6

P
ρ

+ · · ·
)

.

This agrees with the Newtonian formula up to first order. For the derivative we
obtain in the whole region P ∈ (0,∞) that

dMtot

dP
> 0 .
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Hence Mtot is an increasing function of P. Finally,

lim
P→∞

Mtot =
4
9

1√
3πG3

ρ−1/2 .

This limit is finite. Hence, the pressure in the center diverges if the mass of the star
is increased up to the limit. This is the effect of the relativistic corrections. However,
it is clear that the chosen equation of state cannot hold for arbitrarily large values
of the pressure and must break down way before P = ∞. If this happens in the non-
relativistic region, then the Newtonian theory is sufficient to compute the mass limit,
if this only happens in the relativistic region, then the Newtonian calculations have
to be corrected.

In the so-called white dwarfs the pressure is dominated by the pressure of
the degenerated electrons. For this equation of state one obtains the so-called
Chandrasekhar mass limit or Chandrasekhar mass of 1.4 MSun [1]. The equation
of state for baryonic matter (neutron stars) leads to a mass limit of 2–6 MSun, where
the relativistic corrections have to be taken into account. White dwarfs and neutron
stars are stars which can exist without a nuclear fuel burning in their interior [1].

6.1.7 Junction Conditions

When there are discontinuities in the matter, we need the so-called junction condi-
tions. They complete the Einstein equations in the case of a jump surface in a similar
way as the Poisson equation of electrostatics is completed by the condition that the
potential be C1 along the surface of the dielectric. We can formulate the junction
conditions as follows:

In the neighborhood of each point of a jump surface there exist coordinates
so that the components of the metric in these coordinates are C1 in that neigh-
borhood.

We postulate that this condition holds in general.
Let us examine whether the resulting metric of the star satisfies these conditions.

Recall that the metric has the form

ds2 = B(r)dt2 −A(r)dr2 − r2 dϑ 2 − r2 sin2ϑ dϕ2 .

The surface of the star is at r = ro. Let us examine the properties of the components
in turn. For B(r) we have (6.1) and (6.4). As m(r) and p(r) are continuous at r = ro

alsoΦ′ and thus B′ is continuous. The components gϑϑ and gϕϕ , that is the functions
r2 and r2 sin2ϑ have continuous derivatives of arbitrary order. Finally, from (6.2) we
obtain that for A(r) we have

dA
dr

= 2
rm′ −m

(r−2m)2 .
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But the function m′(r) is not continuous,

dm
dr

∣∣∣∣
r<ro

= 4πGr2ρ ,
dm
dr

∣∣∣∣
r>ro

= 0 ,

as ρ is allowed to jump. Hence, in the coordinates t, r, ϑ , and ϕ the metric is not C1.
We try to introduce a new radial coordinate l, which is given near r = ro by the

following equation:

l(r) :=
∫ r

ro

√
A(x)dx .

It is continuous, equal to zero at r = ro, and its derivatives

dl
dr

= A(r)

is also continuous and non-zero. This implies that an arbitrary function f (r) which
is C1 at r = ro defines a function f (r(l)) of l which is C1 at l = 0. The transformed
metric becomes

ds2 = B(r(l))dt2 −dl2 − r2(l)dϑ 2 − r2(l)sin2ϑ 2 dϕ2 .

All components of this metric are C1. Hence the junction conditions are satisfied.

6.2 Properties of the Schwarzschild Solution

We shall now have a closer look at the special metric (6.10). We consider r in the
range (0,∞), that is we set ro = 0.

6.2.1 The Birkhoff Theorem

The first important property of the Schwarzschild metric which we shall describe
(but not derive—that is not the scope of this book, a proof can be found in [4]) can
be presented as follows.

Theorem 17 Every rotationally symmetric solution to the Einstein equations with

Λ= 0 , Tμν = 0

is identical to (a piece of) the Schwarzschild solution.

Hence the time independence need not be assumed.
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This also means that a star moving such that it stays rotationally symmetric (only
radial deformations) generates the Schwarzschild metric on its outside. This moti-
vates to study this metric in the region up to r = 0.

6.2.2 Radial Light Rays

As shown in Sect. 6.1.4, the Schwarzschild metric yields the familiar geometry far
outside the gravitational radius. But how does the solution look near that radius?
The rr-component of the metric (6.10) diverges at r = 2RG. This can either mean
that the geometry is singular at these points or that we are looking at it in a singular
coordinate system. To answer this question, we study the radial light-like geodesics
of the metric (6.10). They not only help us find a better coordinate system but con-
tain a lot of information about the geometry. For the time being we simply consider
two space–times, one with r > 2m and the other with r < 2m, the so-called exterior
and interior Schwarzschild space–times.

The geodesics of the metric (6.10) are described by (2.95), (2.96), and (2.97).
The proper choice of the constants for the case of radial light-like geodesics is j = 0
and μ = 0, so that

ϑ = π/2 , ϕ = const , ṙ = ±e , ṫ =
e

1− 2m
r

,

where e > 0 is an arbitrary constant. The third equation implies that r itself is an
affine parameter. Hence, we can choose the affine parameter λ = ±r in such a way
that λ is always future pointing. This renders e = 1.

Thus we obtain two kinds of radial light-like geodesics:

1. ṙ = +1, so that dr
dt > 0 for r > 2m and the geodesic is outgoing in the exterior

Schwarzschild space–time. Then the solution (in both space–times) is

t − r−2m log
∣∣∣

r
2m

−1
∣∣∣= u , (6.18)

where u is an arbitrary constant. Similarly
2. ṙ = −1, so that dr

dt < 0 for r > 2m and the geodesic is ingoing in the exterior
Schwarzschild space–time. The solution is

t + r +2m log
∣∣∣

r
2m

−1
∣∣∣= v , (6.19)

where v is an arbitrary constant.

For constant radii r the constants u and v agree with the coordinate t up to an additive
constant. Furthermore, in the region r > 2m, for very large r, t is the proper time of
the asymptotic static observers. Hence u is the retarded and v the advanced time in
the space–time with r > 2m.
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6.2.3 Eddington–Finkelstein Coordinates

Equation (6.19) defines a function v on the space–time. We introduce the functions
v, r, ϑ , and ϕ as new coordinates. These are called Eddington–Finkelstein coordi-
nates [5]. To transform the metric (6.10) into these coordinates, we compute from
(6.19) that

dt = − dr

1− 2m
r

+dv ,

and substitute this into (6.10) for both regular domains r ∈ (0,2m) and r ∈ (2m,∞).
The result is

ds2 =
r−2m

r
dv2 −2dvdr− r2(dϑ 2 + sin2ϑ dϕ2) . (6.20)

The new components of the metric are all smooth at r = 2m, and the determinant

g = −r4 sin2ϑ

only vanishes at r = 0 and ϑ = 0, π . Hence the metric itself is regular at r = 2m.
Thus the exterior and the interior Schwarzschild space–times can be identified as
parts of the Eddington–Finkelstein space–time where r ∈ (0,∞).

We now consider the coordinates v, r′ = r, ϑ ′ = ϑ , and ϕ ′ = ϕ as regular (al-
lowed) around the points with r = 2m. The old coordinates t, r, ϑ , and ϕ then have
to be regarded as singular (not allowed) since, first

⎛

⎜⎜
⎝

∂v
∂ t

∂v
∂ r

∂ r′

∂ t
∂ r′

∂ r

⎞

⎟⎟
⎠=

(
1 r

r−2m

0 1

)

,

that is the matrix of the coordinate transformation is singular at r = 2m, and second,
the metric is regular in the coordinates (v,r,ϑ ,ϕ) and singular in (t,r,ϑ ,ϕ). The
class of regular (allowed) coordinates is determined uniquely by the requirement that
the metric be regular, provided there exists at least one regular coordinate system.
This holds in the general case and the proof is not difficult (exercise).

Why is the metric singular in Schwarzschild coordinates? As these coordi-
nates are adapted to the symmetry, something must happen to the symmetry at
r = 2m. We can easily find out what this is by computing the components of the
Killing vector of the time translation. In Eddington–Finkelstein coordinates they
are ξ ′μ = (1,0,0,0). This vector is everywhere non-zero and smooth. But its square,
gμνξ μξν = (r−2m)/r changes sign when passing through r = 2m. That is, the sym-
metry is time-like outside of 2m, light-like at 2m, and space-like below 2m (Fig. 6.2).
This resembles the boost in the tx-plane where the corresponding generator also
changes its signature. Hence the Schwarzschild space–time is not globally static.

The metric has a real singularity at r = 0, where also the curvature diverges and
the space–time in no longer locally flat.
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0

v = u2

v

u = u2

a 2m

b

u = ∞
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u = u1

v = v2

v = 0

v = v1

r

Fig. 6.2 The curves of constant u and v in Eddington–Finkelstein space–time. The form of the
light cones is indicated by bold vectors

6.2.4 The Horizon

We can now draw the Eddington–Finkelstein space–time in the v–r diagram
(Fig. 6.2). The ranges of the coordinates are r ∈ (0,∞) and v ∈ (−∞,∞). The lines
v = const represent ingoing light-like rotationally symmetric hypersurfaces. The
future direction along these hypersurfaces is the direction of decreasing r.

To understand what happens at r = 2m, we examine the outgoing radial light
rays (6.18) near r = 2m by rewriting them in Eddington–Finkelstein coordinates.
Substituting t from (6.19) into (6.18) yields

v−2r−4m log
∣∣∣

r
2m

−1
∣∣∣= u . (6.21)

Thus, along the curves where u = const, we have that

dr
dv

=
r−2m

2r
. (6.22)

This results in three different kinds of outgoing radial light rays (Fig. 6.2):

1. r > 2m. Then
dr
dv

> 0

and the radial coordinate r increases in the future direction along the ray. For the
“ends” of the ray we find from (6.21) that
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v → ∞ r = ∞ r′ = 1
2

v →−∞ r = 2m r′ = 0 .

Each ray beginning at a point with r > 2m reaches arbitrarily distant points if v
is large enough. Furthermore, it also stays in this region for all values of v in the
past.

2. r = 2m. It can be checked that this equation, together with ϑ = const, ϕ = const
defines a light-like geodesic in the Eddington–Finkelstein space–time. It corre-
sponds to the coordinate value u = ∞. Thus light is trapped at constant radius
r = 2m.

3. r < 2m. Then
dr
dv

< 0 ,

and the radial coordinate r decreases along the ray in future direction. For the
“ends” of the ray we obtain

v → u r = 0 r′ = −∞
v →−∞ r = 2m r′ = 0 .

Thus, each outgoing ray u = const which starts at a point with r < 2m falls into
the center at v = u. It also remains in this region for all values of v in the past.

We can easily show that for no (including non-radial) causal signals the r coor-
dinate can increase faster with v than for the outgoing radial ones. Let such a signal
move along a curve given by the functions v(λ ) r(λ ), ϑ(λ ), and ϕ(λ ). As it is
causal and future directed, its tangential vector (v̇, ṙ, ϑ̇ , ϕ̇) satisfies

v̇ ≥ 0

with ṙ < 0 if v̇ = 0. Furthermore,
(

1− 2m
r

)
v̇2 −2v̇ṙ ≥ 0 .

In this inequality we only have equality for ϑ̇ = ϕ̇ = 0. Distinguish the following
cases:

1. v̇ = 0. This is only possible for ϑ̇ = ϕ̇ = 0, that is on a radial ray.
2. v̇ > 0. Then we have in the interior, r < 2m, and outside, r > 2m, from the equa-

tion above that
ṙ
v̇
≤ r−2m

2r
,

and the largest increase in r is given by the equality case, which corresponds to a
radial ray.

Hence we find that light originating from the region r ≤ 2m can never reach
points outside this region. The hypersurface r = 2m is an event horizon for the
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observers outside. They can observe events with r > 2m but cannot see beyond the
hypersurface r = 2m.

The fact that the r coordinate decreases in the region r ∈ (0,2m) along any causal
curve means that r is a time coordinate there. This is in agreement with the form of
the metric as the coefficient of dr2 is positive.

The situation near the horizon can be illustrated by an “acoustic analogy”
(Fig. 6.3). Imagine two horizontal parallel glass plates. There is a hole in the center
of the lower glass plate. From all directions there is a laminar flow of fluid under
pressure between the plates. Assume that the speed of the fluid reaches the sound
velocity at a certain radius Rs (the so-called sonic point) and exceeds sound velocity
at smaller radii. Now an acoustic source can be introduced at different points be-
tween the plates. If it lies outside of Rs, sound can travel outside. At Rs the sound
can only reach the interior of the circle Rs and at all smaller radii almost all the
sound directly flows into the hole.

A way of thinking that is widely established today is to consider the event hori-
zon as the surface of an independent physical object with the name black hole [6].
This is not a matter of course, as the horizon is only an imaginary surface. However,
it proved useful in astrophysics as well as in the theory in general. Numerical sim-
ulations of the Einstein equations show that black holes move like ordinary objects
in the gravitational field of other objects, for example in binary stars.

Today the existence of black holes is practically undisputed in astrophysics. Very
strong candidates are constantly observed. These candidates are often very powerful
sources of radiation and energy (galactic nuclei, binary x-ray sources, etc. [1]). This
is because the vicinity of the event horizon is a deep potential well. The energy
which can be gained by letting things fall into the well is the source of the activity
of these objects in the sky. A good candidate for a black hole is an object which can
be shown to have a large enough mass with a small enough volume. Different mass
limits can be used in this respect.

Observations of the center of our galaxy [7, 8] show that there is a strong point-
like source of x-ray radiation, Sagittarius A*, in the center. The region at distance

Fig. 6.3 Acoustic model of
a black hole. Spherically
symmetric fluid current with
velocity field�V (r) represented
by vectors �V1, �V2, and �V3
reaches the sonic point at
the cylinder S where V =
V2 = vs, vs being the sound
velocity. The sound is carried
along by the fluid. The three
swimmers a, b, and c each
send out a sound signal with
effective velocity v+ in the
outward, and v− in the inward
directions

v+ v− v−

v−

a

c

b = 0

S

V3 V2 V1

v+

v+
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of 3LY is observed since 1992. It was possible to identify single stars there. In
particular, the orbital segments of the six closest stars were extrapolated to complete
Kepler orbits. These orbits were used to compute the mass of the central object
M ≈ 3× 106 MSun. For example, the star S2 with mass 15–20 MSun has an orbital
period of ≈ 17 years. Four of these stars have passed their pericenter during the time
of observation. These observations lead to an estimate of the object’s radius of about
R ≤ 500RS where RS is the Schwarzschild radius for the mass M. It is difficult to
construct an object with that much mass and so small radius which is not a black
hole.

6.3 Oppenheimer–Snyder Collapse Model

In this section we study the formation of a horizon during stellar collapse. To sim-
plify the discussion, we consider a very simple model of the star [9]. The high
symmetry of the model and the trivial equation of state lead to equations of mo-
tion which can be solved explicitly. The main characteristics of this solution hold
for more general situations. To study a more realistic model we would need a very
powerful computer, but we would find the same qualitative properties.

The space–time of the model consists of three parts: the interior, the exterior, and
the surface of the star.

6.3.1 The Interior

We assume that the matter of the star is distributed in a locally homogeneous
and isotropic way. The junction condition p = 0 at the surface then yields p = 0
everywhere. Thus the metric in the interior is part of a Friedmann solution for dust
(Fig. 6.3); recall that we assumed Λ = 0 at the beginning of this chapter. We write
the corresponding metric (5.11) in the form

ds2 = dt2 −a2(t)
dx2

1−Kx2 −a2(t)x2 dΩ2 .

Instead of r we used the letter x to denote the radial coordinate so that r can be
reserved for the radius of the 2-sphere t = const, x = const. Thus

r(t) = a(t)x . (6.23)

The function a(t) satisfies (5.31) with L = 0 and γ = 1:

(
da
dt

)2

− M
a

+K = 0 . (6.24)
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As we are studying collapse we want that a′ < 0. In the closed model (K > 0
in (5.49) and (5.50)) this corresponds to the second half of the cosmic cycle, π <√

Kη < 2π , and the time reversal (t →−t) of the K ≤ 0 solutions ((6.24) is invariant
with respect to time reversal). We further assume that the collapse starts at a time
where a′ = 0. Such times only exist when K > 0 (

√
Kη = π) or K = 0 (t = −∞).

Let us focus on the case K > 0. The maximal value of a(t) is finite for K > 0, we
denote it by aM. From (6.24) we obtain that

aM =
M
K

. (6.25)

We can now re-scale according to (5.12) to achieve aM = 1, that is M = K.
We transform the solution (5.49) and (5.50) so that the time t as well as the

parameter η̃ =
√

Kη−π vanish at the time when the collapse starts:

a =
1+ cos η̃

2
, (6.26)

t =
η̃+ sin η̃

2
√

K
. (6.27)

6.3.2 The Outside

For the metric outside the star we assume (due to Birkhoff’s theorem) the form
(6.20). For r > 2m this metric is static with the corresponding Killing vector
field ξ μ .

6.3.3 The Surface

At a star surface the Einstein equations have to be completed by the junction condi-
tions. They are needed to uniquely determine the solution.

If the star is rotationally symmetric, so must be its surface. It forms an interface
between the Friedmann and the Schwarzschild parts. In the interior it is generated
by the dust trajectories:

t = τ , x = xo, ϑ = ϑ0 , ϕ = ϕ0 ,

where xo is a fixed constant, which determines the part of the Friedmann space–time
that plays the role of the star, and ϑ0 and ϕ0 assume values in the intervals

0 ≤ ϑ0 < π , 0 ≤ ϕ0 < 2π .
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These dust trajectories are time-like geodesics, as p = 0 and no force (besides grav-
ity) acts on the dust particles. According to (6.23), the radius r(t) of the sphere
t = const is given by

r(t) = a(t)xo . (6.28)

Equation (6.24) yields the following equation for the function r(t):

ṙ2

Kx2
o
− xo

r
+1 = 0 . (6.29)

Its solution is given by (6.26) and (6.27):

r =
xo

2
(1+ cos η̃) , (6.30)

t =
η̃+ sin η̃

2
√

K
. (6.31)

The function r(t) determines the geometry of the surface:

d3s2 = dt2 − r2(t)dΩ2 .

The junction conditions imply the following. From the outside the surface is also
generated by time-like geodesics. Physically, this means that dust particles slightly
outside the surface of the star move parallel to the surface. More generally, the
trajectories of free-falling particles have to vary smoothly if the limit is taken from
above and from below (if the 4-velocity jumps, we have infinite acceleration and
need infinite force). Furthermore, the two hypersurfaces have to “fit together”, that
is the 3-metric on the interior equals the 3-metric on the exterior, otherwise the
two surfaces cannot be glued together (Fig. 6.4). Finally, the area of the x = const
sphere has to grow with the same rate in the interior and the exterior when we move
perpendicularly to the surface. Let us calculate the form of the surface from the
outside.

Let the time-like geodesics generating the surface be given by

v = v(t) , r = r(t) , ϑ = ϑ0 , ϕ = ϕ0 ,

where t is the proper time along the geodesic. The functions v(t) and r(t) satisfy
the geodesic equations of the metric (6.20). These can be reduced to the following
first-order integrals:

(
1− 2m

r

)
v̇2 −2v̇ṙ = 1 , (6.32)

(
1− 2m

r

)
v̇− ṙ = e . (6.33)
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Fig. 6.4 Two-dimensional Friedmann model. The part abe represents the inside of the star. The
pairs ab and cd of points represent 2-spheres of the same radius

Eliminating v̇ from these equations, we obtain the radial equation

ṙ2 +1− 2m
r

− e2 = 0 . (6.34)

Assume that the radius of the star has a finite value rM when the collapse begins. At
that time also ṙ = 0. Inserting into (6.34) yields

e2 = 1− 2m
rM

,

and thus (6.34) becomes
rM

2m
ṙ2 − rM

r
+1 = 0 . (6.35)

Equations (6.29) and (6.35) must lead to the same solutions. This implies that

K =
2m

r3
M

, xo = rM . (6.36)
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In view of (6.36) we can compute the parameters K and x0 of the solution in the
interior from the parameters m and rM of the outside. The solution of (6.35) follows
from (6.30) and (6.31) by inserting (6.36):

r =
1
2

rM(1+ cos η̃) , (6.37)

t =
1
2

rM

√
rM

2m
(η̃+ sin η̃). (6.38)

Thus the total mass m/G of the star and its initial radius rM determine the Friedmann
metric in the interior (K) and the x-coordinate of the surface in a unique way. How-
ever, the same x-coordinate can mean two very different parts of the Friedmann
space–time as on the S3 there are two S2-surfaces with the same x-coordinate. We
have to take the closer one, as the area of the spheres x = const increases at this
surface and decreases at the other one when approaching it from the inside. It can
be shown that then all junction conditions are satisfied.

This completes our construction. For every pair (m,rM) we found exactly one
model. The metric and the matter in the interior part are uniquely determined by the
junction conditions (6.36).

Equations (6.37) and (6.38) lead to the following conclusions about the final
state of the collapse. The collapse begins at the value of the parameter η̃ = 0, where
t = 0 and r = rM. It ends at η̃ = π , ts = 1

2πrM
√

rM/2m, and r = 0. The end of the
collapse is a singularity as the matter density ρ and the curvature become infinite.
The surface crosses the horizon when r = 2m. The corresponding value η̃H of the
parameter η̃ is given by

cos
1
2
η̃H =

√
2m
rM

.

In the interior, the metric is regular at that time. In combination with η̃H ∈ (π/2,π)
this yields that

η̃H = π−2arcsin

√
2m
rM

.

Inserting this into (6.38), we obtain the proper time tH of an observer at the surface
of the star as it crosses the horizon:

tH = rM

√
rM

2m

(
π
2
− arcsin

√
2m
rM

+
√

2m
rM

√

1− 2m
rM

)

.

We assume that the star was “normal” before the collapse, that is

2m
rM

� 1 ,

and expand the arcsin:

arcsinx = x+
1
6

x3 + · · · .
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Then tH ≈ ts − 4m/3. Here m is in our units the time that light needs to travel the
distance m. The final state of the collapse, from rM ≈ 2m to r = 0, appears to run at
almost double the speed of light. Of course, a difference in the coordinate r is not
equal to the corresponding radial distance.

6.3.4 Radial Light-Like Geodesics

Let us first consider radial light-like geodesics in the whole Friedmann space–time.
We can later restrict our considerations to the interior of the star. As x = 0 consists
of the north and south poles of the 3-sphere t = const, the radial light-like geodesics
generate the light cones of these points (future or past). It is favorable to introduce
other coordinates in place of t and x. Define

t =
1

2
√

K
(η̃+ sin η̃) , x =

sinχ√
K

.

Then the metric becomes

ds2 =
[

1

2
√

K
(1+ cos η̃)

]2

(dη̃2 −dχ2 − sin2 χ dΩ2) . (6.39)

The whole space–time is covered by the following coordinate ranges for η and χ
(Fig. 6.5):

−π < η̃ < π , 0 ≤ χ ≤ π , (6.40)

since the complete 3-sphere η̃ = const contains the two hemispheres with 0≤ x ≤ 1.
Each point (η̃ ,χ) in the region (6.40) represents a 2-sphere in space–time. The
radius of this sphere can be read off the metric (6.39):

r =
1

2
√

K
(1+ cos η̃)sinχ . (6.41)

The right-hand side is positive provided (6.40) holds. On the boundary of the rect-
angle (6.40) we have r = 0. At χ = 0,π this holds, since these points are the poles
of the 3-sphere. For η = −π,+π we are in the singularity where the radius of the
complete 3-sphere vanishes.

With respect to the new coordinates, the radial light-like geodesics are given by
the four functions η̃(λ ), χ(λ ), ϑ(λ ), and ϕ(λ ), which must satisfy the relations

[
1

2
√

K
(1+ cos η̃)

]2

( ˙̃η2 − χ̇2) = 0 , ϑ(λ ) = ϑ0 , ϕ(λ ) = ϕ0 .

It follows that
χ = ±(η̃− η̃0) . (6.42)
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Fig. 6.5 Penrose diagram of
a closed Friedmann model.
The inside of the star is given
by η̃ ∈ (0,π) and χ ∈ (0,χ0).
The points of turn around of
outgoing null hypersurfaces
fill the dashed line. The
surfaces H and S separate
types 1, 3, and 4 H

S

η̃

χ0 χ
0

π/2

π/2

−π/2

We do not need the affine parameter, and thus this result is sufficient for our pur-
poses. In the rectangle (6.40) the (+)-solutions (6.42) determine radial outgoing
(with respect to the north pole) light-like hypersurfaces. When they reach a point
with χ = 0, they can be interpreted as the future light cone of that point, and simi-
larly at a point with χ = π as its past light cone. All geodesics which start at the north
pole meet at the south pole (as soon as η̃0 < 0). Analogously for the (−)-solutions.
We see that the light needs the η̃-interval 2π to travel around the 3-sphere—this is
the complete cosmic cycle.

A hypersurface (6.42) starts at r = 0, then expands, that is the radius r(η̃) of its
intersections with the hypersurfaces η̃ = const increases, reaches a maximum—the
turning point—and then contracts back to r = 0. Let us determine the turning points.
To this end we substitute (6.42) for χ into (6.41):

r(η̃) = ± 1

2
√

K
(1+ cos η̃)sin(η̃− η̃0) .

The turning points are determined by the equation

r′(η̃u) = 0 ,

or

cos(2η̃− η̃0) = −cos(η̃− η̃0) .
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The solutions in the interior of (6.40) are

η̃u =
2
3
η̃0 +

1
3
(2n+1)π , (6.43)

where n must be an integer. Equation (6.42) then implies that

χu = ±(η̃u − η̃0) . (6.44)

Eliminating η0 from (6.43) and (6.44), we obtain the equation for the turning points.
The turning points for outgoing hypersurfaces are

η̃+
u = −2(χu −

1
2
π) , (6.45)

and for ingoing ones

η̃−
u = 2(χu −

1
2
π) . (6.46)

The interior of the star is given by the following rectangle in (6.40)

0 ≤ η̃ ≤ π , 0 ≤ χ ≤ χo , (6.47)

where
χo = arcsin(

√
Kxo) .

Obviously, we have to choose

χo <
π
2

,

as otherwise the derivatives of the metric are not continuous at the surface. Then
only the curve (6.45) intersects the rectangle (6.47). This means that the ingoing
light-like hypersurfaces contract everywhere in the interior of the star. On the other
hand the behavior of the outgoing light-like hypersurfaces it not so simple. There
are four cases, depending on the time at which the hypersurface starts at the north
pole χ = 0 (Fig. 6.5).

1. η̃0 < π−3χo. These hypersurfaces expand and reach the surface of the star with
r′ > 0. They connect smoothly to the u = const (outgoing) hypersurfaces outside
of the horizon.

2. η̃0 = π − 3χo. This hypersurface expands in the interior of the star and reaches
its surface with r′ = 0 and r = 2m. It connects smoothly to the horizon r = 2m
outside of the star.

3. π − 3χo < η̃0 < π − χo. These hypersurfaces expand, reach their points of turn
around inside the star and subsequently contract. Still contracting, they reach
the surface with r < 2m. They connect smoothly to the contracting u = const
hypersurfaces on the outside.

4. η̃0 ≥ π− χo. These hypersurfaces are inside of the star as in 3., but they do not
reach the surface of the star. Instead, they fall into the singularity η = π .



232 6 Rotationally Symmetric Models of Stars

We now see how the horizon forms during the collapse. It is the hypersurface of
type 2 (Fig. 6.5). It starts as an ordinary light cone in the center of the star at time
η̃0 = π−3χo, emerges divergence free (that is with r′ = 0) at the surface of the star,
and connects smoothly to the hypersurface r = 2m in the Eddington–Finkelstein
space–time. The decrease in the divergence of the light rays which form the light
cone is caused by the matter which crosses the light cone (this is shown by the
so-called Raychaudhuri equation [4]). No event beyond this hypersurface can be
observed from the outside. Thus this hypersurface is the event horizon. Note in
particular that the singularity lies beyond the event horizon and thus cannot influence
any events outside the horizon and cannot be observed from the outside either.

We shall now examine how the collapse looks like for an outside observer. Con-
sider a light source at the surface of the star. Its trajectory is given by the functions
v(t) and r(t) which are determined by (6.32) and (6.33). In particular, t is the proper
time of the source.

The proper time of the asymptotic observer agrees with the retarded time u up to
an additive constant. The light which is emitted by the source travels along the hy-
persurfaces u = const until it reaches the asymptotic observer. The relation between
the time of arrival at the asymptotic observer and the time of emission at the source
is thus given by the function u(t). It results by inserting the functions v(t) and r(t)
into (6.21) for the variables v and r.

Along the complete trajectory we have

ṙ < 0 , v̇ > 0 , e > 0 .

Thus, (6.34) implies that

ṙ = −
√

e2 −
(

1− 2m
r

)
, (6.48)

v̇ =
e+ ṙ

1− 2m
r

. (6.49)

From (6.48) and (6.49) we calculate the values of the derivatives at the horizon
r = 2m:

ṙH = −e , v̇H =
1
2e

,

since

lim
x→0

e−
√

e2 − x
x

=
1
2e

.

Thus we have
r ≈ 2m− e(t − tH)+ · · · ,

and

v ≈ vH +
1
2e

(t − tH)+ · · · .
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If we insert this in u,
u = v−2r−4m ln

∣∣∣
r

2m
−1

∣∣∣ ,

it results in

u ≈−4m ln |t − tH|+
(

vH −4m−4m ln
e

2m

)
+
(

2e+
1
2e

)
(t − tH) .

The leading term on the right-hand side is independent of the trajectory of the
ingoing light source, only the correction terms depend on it (via the constant e).
The redshift is given by z = u̇− 1, and thus diverges when the surface of the star
approaches the horizon.

We can draw the following conclusions. The asymptotic observer will never see
the fall of the star through the horizon. The light signal which carries this informa-
tion will not reach him in finite time! Even before that he will no longer be able to
receive light signals from the surface of the star due to the increasing redshift, which
dims the signal. In summary, we obtained the following important properties of our
model:

1. The final state of the collapse is a singularity.
2. A regular horizon forms. It hides the singularity from an outside observer and

limits the influence the singularity has on the rest of the space–time.
3. The redshift diverges and the movement of the star freezes for the asymptotic

observer when the surface of the star approaches the horizon.
4. The fall through the horizon is not observable from the outside.

We elaborate on the first point. The singularity represents infinite density and curva-
ture. Furthermore, it formed from regular initial data. This yields an intrinsic contra-
diction in general relativity: regular initial data, together with the Einstein equations,
that is certain assumptions of the theory, imply a state, which violates other assump-
tions of the theory—the singular points do not have a nearly flat neighborhood.

It is important to emphasize that we mean a complete collapse here (complete
means that it reaches the horizon). A more realistic equation of state can stop the
collapse in one of its phases in certain special situations. However, if the collapse
reaches the horizon, there is nothing that can prevent further collapse.

We should also understand the main difference to, say, classical electrodynam-
ics. It could be objected that point charges in electrodynamics also form singular
fields. However, in classical electrodynamics the charges are modeled as continu-
ous distributions. To form a point charge thus requires an infinite amount of energy
since charges of the same sign repel each other. Consequently, there are no point
charges in classical electrodynamics. In the theory of gravity, the same “charges”,
that is mass, attract each other. They can spontaneously form a point mass, that is a
singularity. It is believed that quantum theory might be able remove this problem.

These properties remain valid for far more general models of gravitational col-
lapse [1] and are considered universal. A generalization of point (2) to an arbitrary
complete gravitational collapse is called the cosmic censorship hypothesis (“naked”
singularities are not allowed). In [4], this is called “future asymptotic predictability”.
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6.4 Exercises

1. Let (M ,g) be a static, rotationally symmetric space–time with the metric

ds2 = B(r)dt2 −A(r)dr2 − r2 dϑ 2 − r2 sin2ϑ dφ 2 .

Furthermore, let Wμν(x) be an arbitrary tensor of type (0,2) on M .
Prove that if Wμν(x) has the same symmetries as gμν , then it must have the form
Wμν(x) = 0 for all μ �= ν and all x, and Wϑϑ sin2ϑ = Wφφ . Hint: work with
components with respect to a suitable orthonormal basis. Rotate or reflect the
basis and examine how the components change under these operations.

2. For the spherically symmetric metric, compute the Christoffel symbols {μρσ} and
then use the above result to calculate all components of the Ricci tensor Rμν .

3. Use the results from Exercise 1 to write down the Einstein equations for the
functions A(r), B(r), ρ(r), and p(r).

4. Show that the following two systems of equations are equivalent:

(1) the tt-, rr-, and ϑϑ -components of the Einstein equations and
(2) the tt-, rr-components of the Einstein equations and the Euler equation.

5. Transform the metric of the exterior Schwarzschild space–time to the retarded
Eddington–Finkelstein coordinates u, r, ϑ , and ϕ , and construct the corresponding
extension (retarded Eddington–Finkelstein space–time) of exterior Schwarzschild
space–time in analogy to our extension in the advanced Eddington–Finkelstein
coordinates v, r, ϑ , and ϕ . Which kind of horizon can be found in the retarded
Eddington–Finkelstein space–time?

6. Compute the density ρH of the star in the Oppenheimer–Snyder collapse model
at the instant when the surface of the star crosses the horizon. The total mass m
and the initial radius rM are given. Then insert m = mGalaxy and m = mSun for the
mass and transform the resulting values to kg m−3.

7. Compute the tidal forces (in N/kgm) which act on a co-moving observer on the
surface of the star. Insert the values from Exercise 6 for the mass. When does it
start to get uncomfortable?
Hint: assume that the observer is in the Schwarzschild part of the space–time.
First compute for an observer at rest (r = const), and show that in the special
case of the Schwarzschild space–time the tidal forces are independent of the
radial velocity of the observer.
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Chapter 7
Stationary Black Holes

In the previous chapter we studied two space–times containing black holes. First we
inspected the advanced Eddington–Finkelstein space–time and second the Oppenhe-
imer–Snyder space–time. This background now allows us to define a black hole in
a more rigorous way than before (cf. p. 223):

Definition 18 Let (M ,g) be an asymptotically flat space–time and let M∞ be an
asymptotically flat region in M . Let H be a light-like hypersurface in M which
separates M into two regions M+ and M− such that M∞ ⊂ M+. If every event
p ∈ M+ is visible for an observer in M∞, but no event q ∈ M−, then H is called
absolute event horizon with respect to M∞ and M− is called isolated black hole.

We shall now study black holes satisfying the additional condition of stationarity
(for a completely rigorous theory, see [1]). The black hole which emerges from the
collapsing star has begun as the light cone of an event in the center of the collapsing
star and is therefore not stationary. One example for a stationary black hole is the
one in the advanced Eddington–Finkelstein space–time, as one of the Killing vector
fields is light-like at the horizon. We will elaborate on this notion and shall need
some more knowledge about hypersurfaces.

7.1 Hypersurfaces

Sometimes it is advantageous to define hypersurfaces in a different way than by
an equation u = 0. For instance, the latter definition produced only oriented hyper-
surfaces and is therefore less general. We investigate an alternative way of defin-
ing a hypersurface and describe some important properties of hypersurfaces in
space–time.

Hájı́ček, P.: Stationary Black Holes. Lect. Notes Phys. 750, 237–274 (2008)
DOI 10.1007/978-3-540-78659-7 7 c© Springer-Verlag Berlin Heidelberg 2008



238 7 Stationary Black Holes

7.1.1 Definition

Let (M ,g) be a space–time and S̄ a three-dimensional manifold. A smooth hyper-
surface S = ι(S̄) in M is defined by a map ι : S̄ �→M with the following properties:
(a) ι has an inverse ι−1 on S and (b) if {yk} are coordinates in a neighborhood
of p ∈ S̄ in M , then the map ι can be represented by the embedding functions
xμ(y1,y2,y3) and we require that the (3× 4)-matrix ∂xμ/∂yk be of rank 3. We can
regard y1, y2, and y3 as functions on S and hence as coordinates there (Fig. 7.1).

7.1.2 Tangential Vectors

A vector tangent to S can be defined as a tangent vector of M which is the tangent
of a curve contained in S. The four functions xμ(λ ,y2,y3) of a variable λ , where y2

and y3 remain fixed, define such a curve in S. Similar reasoning for y2 and y3 yields
that the three vectors with components

(
∂x0

∂yk , . . . ,
∂x3

∂yk

)
, k = 1,2,3,

are three tangent vectors of S in each point. Hence condition (b) means that the three
vectors ∂xμ/∂yk, k = 1,2,3, are linearly independent everywhere on S.

Each curve C in S determines a curve C̄ in S̄ by C̄ := ι−1 ◦C. Then

xμ(λ ) = xμ(y(λ )) ,

where xμ(λ ) = h◦C and yk(λ ) = h̄◦ ι−1 ◦C. Hence each tangent vector of S can be
written as a linear combination of ∂xμ/∂yk, k = 1,2,3, since

ẋμ(λ ) =
∂xμ

∂yk ẏk(λ ) .

h(p)

h

3

p
S

S̄
ι

ι(p)

e2
μ

e1
μ

M

Fig. 7.1 The embedding of the three-dimensional manifold S̄ in the four-dimensional manifold
M , the coordinate curves, and their tangential vectors eμk = ∂xμ/∂yk
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Thus the vectors ∂xμ/∂yk, k = 1,2,3, form a basis for the space of tangential vectors
to the hypersurface in the corresponding point (Fig. 7.1). Consequently, each tangent
vector uμ of S in p ∈ S can be written as

uμ = ūk ∂xμ

∂yk ,

where ūk can be considered as components of u with respect to the coordinates {yk}.

7.1.3 Induced Metric

The metric of M can be projected to the following 2-tensor on S:

γkl := gμν
∂xμ

∂yk

∂xν

∂yl .

γkl is called the metric induced by gμν on S. We observe that the components of γkl

are scalar products of the basis vectors ∂xμ

∂yk . In general, if eμk is an arbitrary basis

of the tangential space, then the induced metric has the components γkl = gμνeμk eνl
with respect to this basis. As we will see later, γkl need not be a metric in our sense
(non-degenerate). We thus want to extend our notion of a metric slightly to also
allow degenerate metrics.

7.1.4 Normal

A normal Nμ of S is every non-vanishing vector which satisfies the equation
gμνNμ ∂xν

∂yk = 0 for all k. That is, it is orthogonal to all tangent vectors of S. There
are many such vectors in each point p ∈ S, but they are all contained in a one-
dimensional sub-space of TpM . The set NpS of all possible normals in this point is
this sub-space without the origin, that is a set with two components.

Let Nμ be a normal and let tμ be a vector at p ∈ S which satisfies the equation
gμνNμ tν = 0. Then tμ is tangential to S.

Proof Such a vector satisfies the equation Nμ tμ = 0. This is a non-trivial lin-
ear equation and the solutions of this equation form a three-dimensional sub-
space of TpM . The tangent vectors also satisfy this equation and they span a
three-dimensional sub-space. Hence these two sub-spaces must agree.

7.1.5 Classification of Hypersurfaces

Depending on the signature of its normal, we classify a hypersurface to be either
time-like, space-like, or light-like. This corresponds to the condition that Nμ is, in
that order, space-like, time-like, or light-like everywhere on S. We will also use
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the notion of non-time-like, which corresponds to a normal which is non-space-like
everywhere.

What are the consequences of this definition for the signature of the induced met-
ric and the relative position of the hypersurface with respect to the local light cones?
To answer these questions, we choose a local inertial frame xμ at p. The metric at
p then has the form gμν(p) = ημν . We denote the basis at p which is associated to
the coordinates by (e0,e1,e2,e3). These vectors are given by their components with
respect to xμ by eμα := δ μα . The tangent space TpM equipped with the metric gμν(p)
on TpM is Minkowski space (TpM ,gμν(p)).

The light cone LpM of the point p in this Minkowski space–time plays an im-
portant role. The tangent vectors of all causal curves through p must lie in this light
cone, or more precisely in the future light cone L+

p M . The light cone is bounded by
vectors of the form

l
(

eμ0 +nk(ϑ ,ϕ)eμk
)

,

where l ∈ R and nk(ϑ ,ϕ) is given by (5.5). The boundary of the future light cone is
given by l ∈ (0,∞).

Assume first that the hypersurface is time-like. Then the local inertial frame can
be chosen so that Nμ = (0,0,0,n) and Nμ = (0,0,0,−n), where n is a number.
Hence, the equation Nμ tμ = 0 becomes t3 = 0, and all solutions thereof have the
form t0eμ0 + t1eμ1 + t2eμ2 , with (t0, t1, t2) ∈ R

3. They form the tangent space TpS
for S at p. Thus TpS is a time-like plane in TpM , and eμ0 , eμ1 and eμ2 are three
orthonormal vectors tangential to S at p. The induced metric can then be transformed
to diag(1,−1,−1) and hence has signature −1.

What is the relative position of TpS with respect to LpM or L+
p M , respectively?

The plane TpS intersects LpM so that the common vectors satisfy

leμ0 + lnk(ϑ ,ϕ)eμk = t0eμ0 + t1eμ1 + t2eμ2 ,

that is n3(ϑ ,ϕ) = 0 or ϑ = π/2, t0 = l, t1 = l cosϕ , and t2 = l sinϕ . The component
of the vectors in the future light cone with respect to the normal Nμ = eμ3 is l cosϑeμ3 .
As l > 0, this component points into the direction of Nμ if ϑ < π/2. Hence, there are
curves which cross S at p in the direction of the normal Nμ , and also in the opposite
direction. That is, a time-like hypersurface can be crossed by future-oriented causal
curves in both directions.

For a space-like hypersurface we proceed analogously. This leads to three space-
like orthonormal tangent vectors and to the signature −3. We thus have that TpS is
spanned by the vectors of the form t1eμ1 + t2eμ2 + t3eμ3 and the normal is of the form
Nμ = eμ0 . The equation

leμ0 + lnk(ϑ ,ϕ)eμk = t1eμ1 + t2eμ2 + t3eμ3

now has the only solution l = 0 and t1 = t2 = t3 = 0. A space-like hypersurface
separates the light cone LpM into its future and past components. The normal Nμ =
eμ0 is chosen such that it lies in the future half of the light cone. Thus, particles
and light can cross a space-like hypersurface only in one direction, namely in the
direction of the future-oriented normal.
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Finally, for a light-like hypersurface we can choose the local inertial frame so
that Nμ = n(1,0,0,1) and Nμ = n(1,0,0,−1). Then the equation Nμ tμ = 0 yields
that t0 − t3 = 0. All solutions to this equations are given by t0(eμ0 + eμ3 ) + t1eμ1 +
t2eμ2 with (t0, t1, t2) ∈ R

3. These define a light-like hyperplane in TpM such that
eμ0 + eμ3 , eμ1 , and eμ2 are three independent tangent vectors. They are mutually or-
thogonal and the square of their norm is, in that order, 0, −1, −1. Hence the induced
metric can be written in the form diag(0,−1,−1). It has no well-defined signature
and is degenerate. The tangent vector eμ0 + eμ3 is orthogonal to each other tangent
vector, including itself: it is the normal! Thus the normal is simultaneously tangen-
tial to S and annihilates the induced metric γklNk = 0. It is furthermore the only
non-space-like direction tangential to a light-like hypersurface.

Again, we consider the equation

leμ0 + lnk(ϑ ,ϕ)eμk = t0(eμ0 + eμ3 )+ t1eμ1 + t2eμ2 .

It follows that l = t0 and n3 = 1, that is ϑ = 0. Hence there is a single common
direction in TpS and LpM , namely t0(eμ0 + eμ3 ) = t0Nμ , that is, the normal. The
plane TpS touches LpM in this direction. Thus the future half of the light cone lies
on one side of TpS, and again future-oriented causal curves can cross S at p only in
one direction.

The type of the hypersurface can also be recognized by looking at the form of
the induced metric, as there are no other possibilities besides the three discussed
above. In particular det(γkl) > 0 if the hypersurface is time-like, det(γkl) < 0 if it is
space-like, and det(γkl) = 0 if it is light-like.

We have proved the following important theorem:

Theorem 18 Causal, future-directed curves can cross a time-like hypersurface in
both directions, but a space-like or light-like hypersurface only in one direction at
each point.

Now we can define a stationary black hole.

Definition 19 Let (M ,g) be an asymptotically flat space–time with an absolute
event horizon H. The isolated black hole is called stationary if there exists a Killing
vector field in M which is everywhere normal to the horizon H.

Examples: 1. advanced Eddington–Finkelstein space–times contain a stationary
black hole according to our definition. 2. Cosmological horizons in de Sitter space–
time are not horizons of isolated stationary black holes, although there exist Killing
vector fields which are orthogonal to these horizons. The problem is that the
space–time is not asymptotically flat.

7.2 Rotating Charged Black Holes

Consider an object in an asymptotically flat space–time which experienced a com-
plete gravitational collapse. The hypothesis of cosmic censorship implies that in
the last phase of the collapse a black hole forms. In the rotationally symmetric
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case the space–time outside the black hole will not necessarily be described by the
Schwarzschild solution, as we expect strong, but rotationally symmetric radiation
around the star and the horizon (in this case there is no gravitational radiation). After
some time, the radiation disperses as it partly falls into the black hole or is radiated
to infinity. Hence, a rotationally symmetric vacuum solution will be a very good
approximation for the last stage of collapse. By the Birkhoff theorem, this is the
Schwarzschild metric. Thus, the final state of the collapse will be the Schwarzschild
black hole.

In the non-symmetric case the geometry outside the object should be time depen-
dent and sensitive to the details of the collapse. We thus expect that large quantities
of energy can be radiated away. In particular there may be gravitational radiation.
Physical intuition tells us that after a long enough period of time the storm will fade
and metric and matter approach a stationary state. The matter and radiation present
will either be swallowed by the black hole or escape to infinity. We thus expect that
a stationary vacuum solution or a stationary electro-vacuum solution, in the case
that the collapsing object carries a strong charge, describes the space–time long af-
ter the collapse in a satisfactory way. These expectations are supported by model
simulations. This leads us to the following basic assumption for the gravitational
collapse [1]:

In the final phase of the gravitational collapse of an isolated object the space–
time is a part of an electro-vacuum solution up to an arbitrarily small error.
This solution is stationary, asymptotically flat, contains a smooth event hori-
zon, and is smooth between the horizon and the asymptotic regime.

An electro-vacuum solution is a solution of the equations:

Gμν = 8πGTμν ,

∇ρFμρ = 0 ,

Fμν = ∂μAν −∂νAμ ,

Tμν = − 1
4π

(
FμρFρν − 1

4
gμνFρσFρσ

)
.

Here, we will not discuss how such solutions are found, and how the solutions de-
scribed in this chapter have been discovered, as this is much more complicated as our
search for the cosmological solutions or the Schwarzschild solution. For us it will
be sufficient to know that all solutions of the Einstein–Maxwell equations with the
properties stated above have been identified. They form the so-called Kerr–Newman
family. To show that these are really all such solutions is the content of the so-called
uniqueness theorems [2]. These theorems are difficult to prove and we will thus
assume their assertions here.

The uniqueness theorems are remarkable in two different ways. First, in the above
sense, we know everything about the stationary black holes. Second, there are a
lot (an infinite dimensional family) of stationary electro-vacuum solutions which
are asymptotically flat. The Kerr–Newman family forms a subset of measure zero
(that is a very small set). Similarly, all solutions that contain completely collapsing
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stars form an infinite dimensional family. However, each of these converges to a
Kerr–Newman solution. If that is true (a mathematically rigorous proof is not yet
completed, but there is evidence from model simulations) and if we assume that the
result of the collapse is a black hole whose state is determined by the region outside
the horizon, then in the collapse a lot of information is lost.

7.2.1 First Look at Kerr–Newman Space–Time

7.2.1.1 Metric and Symmetry

The metric of a rotating, charged black hole in equilibrium is

ds2 =
Δ
Σ
(
dt −a sin2ϑ dϕ

)2

− sin2ϑ
Σ

[
adt −

(
r2 +a2) dϕ

]2 − Σ
Δ

dr2 −Σdϑ 2 , (7.1)

and the electromagnetic potential is

Aμdxμ =
Qr
Σ
(
dt −asin2ϑ dϕ

)
(7.2)

[3]. This so-called quasi-diagonal form is favorable for many calculations (exercise).
The coordinates t, ϕ , r, and ϑ used here are called generalized Boyer–Lindquist
coordinates (the order of the coordinates is different from the conventions used
previously: x0 = t, x1 = ϕ , x2 = r, and x3 = ϑ ). The following abbreviations are
frequently used:

Σ= r2 +a2 cos2ϑ , (7.3)

Δ= r2 −2Mr +a2 +Q2 . (7.4)

The symbols M, a, and Q denote constants with dimensions of length.
The Kerr–Newman family is only three dimensional, it only has the three inde-

pendent parameters M, a, and Q. This is the remarkable simplicity of the structure
of black holes in equilibrium (“black holes have no hair”, see [4], p. 876). We imme-
diately see that setting a = Q = 0 leads to Aμ = 0 and the metric (7.1) becomes the
Schwarzschild metric. The Schwarzschild horizon is at the solution r = 2M of the
equation Δ= 0. There are further interesting sub-families: Q = 0 yields the so-called
Kerr metric and a = 0 the Reissner–Nordström metric. The Reissner–Nordström
family (a = 0) is rotationally symmetric and static, the orbits of the rotation group
are given by the equations t = const and r = const. The coordinate r then has the
known relation to the area of the orbits which only allows r ≥ 0.

The general Kerr–Newman metric and the potential are independent of the coor-
dinates t and ϕ . Thus the vector fields (1,0,0,0) and (0,1,0,0) are Killing vector
fields. We denote them by ξ μ and ϕμ , respectively. There are two additional discrete
symmetries: the reflection at the equatorial plane ϑ �→ −ϑ +π , and the inversion
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(t,ϕ) �→ (−t,−ϕ). If a �= 0, then there are no other Killing vector fields and the
metric is only axi-symmetric. (The two symmetry axes are given by ϑ = 0,π .)
The coordinate r does not have a simple geometric meaning in this case and can
also be negative without creating a contradiction. The hypersurfaces r = const are
topologically cylinders R×S2.

7.2.1.2 Asymptotic Properties

An important property of the metric (7.1) is that it is asymptotically flat both at
r →∞ and (if a �= 0) at r →−∞. Indeed, if we expand the components of the metric
with respect to powers of r−1, we obtain

gtt = 1−2M
1
r

+O
(
r−2) ,

gtϕ =
(
2Ma sin2ϑ

) 1
r

+O
(
r−2) ,

gϕϕ = −r2 sin2ϑ
(
1+O

(
r−2)) ,

grr = −
[

1+2M
1
r

+O
(
r−2)

]
,

gϑϑ = −r2 (1+O
(
r−2)) .

The last three terms show that r is approximately the usual radial coordinate in the
asymptotic regime. The potential (7.2) has the expansion:

Aμ =
(

Q
1
r
,−aQ sin2ϑ

1
r
,0,0

)
+O

(
r−2) .

Observe that the coefficient of the 1/r-term in the electrostatic potential A0 is Q.
From electrodynamics in flat space–time we know that a similar expansion would
correspond to a source with charge Qelstat = Q× c2 ×G−1/2. Thus the same holds
for the asymptotic region of asymptotically flat space–times. Hence, our source has
also this charge and that is the meaning of the parameter Q. An analogous relation
for the gravitation is given by (4.67).

Transforming the coordinates x1, x2, and x3 into spherical coordinates and set-
ting Jk = Jδ k

3 at the same time, we find that in the region r → +∞ the metric cor-
responds to a source of mass M, with angular momentum J = aM and charge Q.
The asymptotic observers on the other side, r → −∞, see an object of mass −M,
angular momentum J =−aM, and charge −Q (exercise). Recall that we chose units
so that G = c = 1. Then all quantities can be measured in dimensions of length and
its powers.

7.2.1.3 Singularities of the Metric

We infer that we are dealing with a rotating, charged source. What kind of source?
The singularities of the metric (7.1) can shed light on this. Note that the metric
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becomes singular when Σ = 0 or Δ = 0. Is this a true singularity or the effect of
a bad choice of coordinates (similar to the Schwarzschild metric at the horizon)?
This can be seen from the components of the curvature tensor and its corresponding
invariants (which are preferably calculated using a computer). They only diverge at
Σ = 0. We postpone the examination of the points with Δ = 0 to the next section.
Thus consider Σ= 0. If a = 0 then r = 0 is similar to the corresponding location in
the Schwarzschild metric. For a �= 0 we have an interesting situation: the singularity
is at (r = 0,ϑ = π/2) but for r = 0 and ϑ �= π/2 both the metric and the potential
are regular.

Consider the surface r = t = 0; its metric is

ds2 = −a2 cos2ϑ dϑ 2 − tan2ϑ(a2 cos2ϑ −Q2 sin2ϑ)dϕ2.

This is the metric of two isometric discs, the first given by ϕ ∈ [0,2π], ϑ ∈ [0,π/2)
and the second by ϕ ∈ [0,2π], ϑ ∈ (π/2,π]. Both are singular at the bound-
ary ϑ = π/2. The singularity has the form of a ring. Hence, the value 0 of the
r-coordinate not necessarily describes a point (“the origin”), and along the curves of
constant ϑ one can analytically reach negative values of r (Fig. 7.2). This implies
in particular that the two axes ϑ = 0 and ϑ = π never meet, as it is the case at the
(r = 0)-point in flat space.

7.2.1.4 Kerr–Newman Coordinates

Consider the signature of the hypersurfaces r = const. It is determined by the deter-
minant D of the induced metric, the hypersurface is time-like if D > 0, space-like if
D < 0, and light-like if D = 0. A simple calculation yields D = ΔΣsin2ϑ (exercise).
Assume that

a2 +Q2 > M2. (7.5)

Fig. 7.2 The structure of
the Kerr–Newman space–
time around the singularity
r = 0,ϑ = π/2. The left
picture is the part r > 0,
the right one r < 0. The
axes ϑ = 0 and ϑ = π do
not intersect. A closed path
through a and b around the
singularity must cross the line
ϑ = π/2 twice

ϑ = 0

ϑ = π

r = 0

a

b

r = r0

ϑ = π/2

ϑ = π

ϑ = 0

r = 0

b

a

r = −r0

ϑ = π/2
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Then the equation Δ = 0 has no solution. In this case D > 0, and the hypersur-
faces are all time-like, that is causal signals can cross in both directions. This makes
it plausible that the singular ring is visible and can be influenced from r = ±∞.
Later we shall identify the corresponding light-like geodesics. Here, the singularity
is called “naked”, and we can consider the singular ring as the source of the solution.

In the other case the equation has two roots:

r± = M±
√

M2 −a2 −Q2 . (7.6)

In the sequel we will restrict to the cases with M2 > a2 +Q2. The so-called extreme
solutions with M2 = a2 + Q2 are very interesting, but their significance in astro-
physics is marginal. In this case the metric (7.1) is well defined in the following
three regions: the external Kerr–Newman space–time with negative radial coordi-
nate, where −∞< r < r− and the hypersurfaces r = const are time-like, the internal
Kerr–Newman space–time, where r− < r < r+ and the hypersurfaces r = const are
space-like, and the external Kerr–Newman space–time with positive radial coordi-
nate, where r+ < r < ∞ and the hypersurfaces are again time-like.

We suspect that these regions are subsets of a larger space–time, where they
are separated by regular hypersurfaces r = r±, similar to the Eddington–Finkelstein
space–time. To investigate this, we try to find coordinates (v,η ,r,ϑ), which are
analogous to Eddington–Finkelstein coordinates (and in fact become the Eddington–
Finkelstein coordinates when setting a = Q = 0). They are called advanced Kerr–
Newman coordinates. We make the following ansatz for the transformation: we fix
r and ϑ and define the advanced coordinates by

t = v−X(r) , ϕ = η−Y (r) , (7.7)

where X(r) and Y (r) satisfy

X ′(r) =
r2 +a2

Δ
,

Y ′(r) =
a
Δ

.

The coordinate η obtained in this way is again an angular coordinate. In particular
the values (v,η ,r,ϑ) and (v,η+2π,r,ϑ) represent the same points. The correspond-
ing transformation of the differential forms in the metric (7.1) are

dt −asin2ϑ dϕ = dv−asin2ϑ dη− Σ
Δ

dr ,

a dt −
(
r2 +a2)dϕ = a dv−

(
r2 +a2)dη .

Substituting into the expression for the metric yields

ds2 =
Δ
Σ
(
dv−asin2ϑ dη

)2 −2
(
dv−asin2ϑ dη

)
dr

− sin2ϑ
Σ

[
adv−

(
r2 +a2)dη

]2 −Σdϑ 2, (7.8)
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and for the potential we get

Aμ dxμ =
Qr
Σ
(
dv−asin2ϑ dη

)
− Qr
Δ

dr . (7.9)

We see that the metric is regular everywhere, except at the points with Σ = 0 and
ϑ = 0,π as detgμν = −Σ2 sin2ϑ (exercise) and all terms which had Δ in the de-
nominator vanished. The “singularity” at ϑ = 0,π is the well-known coordinate
singularity of spherical coordinates. In the potential the last term on the right-hand
side is singular, but can be removed by a gauge transformation. The transformation
of the Killing vector fields into Kerr–Newman coordinates yields ξ μ = (1,0,0,0)
and ϕμ = (0,1,0,0).

The meaning of the coordinate v in the asymptotic region r →∞ can be found by
considering only the leading order terms in the metric (7.8):

ds2 → dv2 −2 dv dr− r2dϑ 2 − r2 sin2ϑ dη2 .

Hence, v is asymptotically the advanced time. In the interior of the space–time the
surfaces v = const are not light-like but time-like as the induced metric in coordi-
nates η , r, and ϑ is

dS2 = F dη2 −Σdϑ 2 +2asin2ϑ dr dη ,

where

F =
Δ
Σ

a2 sin4ϑ − sin2ϑ
Σ

(r2 +a2)2 .

The determinant a2Σsin4ϑ is positive for a �= 0. The curve which is given by

v = v0, η = η0, r = −λ , ϑ = ϑ0 , (7.10)

with parameter λ , is a light-like geodesic and becomes an analogy to the radial light-
like geodesic in the Kerr–Newman space–times with a = 0 (exercise). This geodesic
is future oriented for r → ∞ and thus everywhere future pointing.

For many calculations we need to know the contravariant metric. Its components
with respect to the coordinates (v,η ,r,ϑ) are (exercise):

gμν =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

−a2 sin2ϑ
Σ

, − a
Σ

, − r2 +a2

Σ
, 0

− a
Σ

, − 1

Σsin2ϑ
, − a

Σ
, 0

− r2 +a2

Σ
, − a

Σ
, −Δ

Σ
, 0

0, 0, 0, − 1
Σ

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (7.11)
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7.2.1.5 The Horizons

Consider the points with r = r± in the advanced Kerr–Newman space–time. They
form regular three-dimensional hypersurfaces. The signature of these hypersurfaces
can be found by computing the metric induced by the space–time metric. To do so,
we simply set r = r± in the formula (7.8)

ds2 = − sin2ϑ
Σ

[
adv−

(
r2
± +a2) dη

]2 −Σdϑ 2 . (7.12)

These are metrics with signature (−1,−1,0) (exercise), that is light-like hypersur-
faces.

As we have seen, light-like hypersurfaces are semi-permeable membranes, that
is signals can only pass in one direction. In the advanced Kerr–Newman space–time
both hypersurfaces can only be crossed from the exterior to the interior. We can see
this from the fact that the future-pointing light-like geodesic (7.10) crosses to the
inside. An observer sitting at large values of r cannot see behind either of the two
hypersurfaces. On the other hand, events arbitrarily close to the outer hypersurface
with radial coordinate r+ can be observed. This can be seen similarly as in the case
of the advanced Eddington–Finkelstein space–time. Hence, the hypersurface r = r+
is an absolute event horizon, and the interior is a black hole.

Some geometric properties of the horizon play an important role in the theory
of black holes. A particularly interesting quantity is the area of a space-like section
of the horizon. We show the following important property. Let S be an arbitrary
space-like section of the horizon (Fig. 7.3). Let A(S) be its area. Then

A(S) = 4π
(
r2
+ +a2) . (7.13)

Note that this is independent of S. Let v = v(ϑ ,η) be the equation of the section,
that is v(ϑ ,η) is a smooth function on the sphere. The induced metric is

ds2 = − sin2ϑ
Σ

[
av,ϑ dϑ +

(
av,η − r2

+ −a2)dη
]2 −Σdϑ 2.

Fig. 7.3 The section
v = v(ϑ ,ϕ) of a horizon

v

ϑ, ϕ

v = v(ϑ, ϕ)
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Then a new coordinate ψ can be introduced:

ψ := η− a

r2
+ +a2

v(ϑ ,η) .

It follows that ψ is an angular coordinate like η , in particular ψ(0) = ψ(2π). The
transformed metric is

ds2 = −
(
r2
+ +a2)2 sin2ϑ

Σ
dψ2 −Σdϑ 2 (7.14)

This metric does not depend on v = v(ϑ ,η). We thus have shown that all sections of
the horizon are isometric. In particular, they all have the same area. For the metric
(7.14) we obtain

det gkl =
(
r2
+ +a2)2

sin2ϑ .

The area of the section is an integral over the determinant:

A(S) =
∫

S
dϑ dψ

√
det(gkl)

=
(
r2
+ +a2)

∫ π

0
sinϑ dϑ

∫ 2π

0
dψ

= 4π
(
r2
+ +a2) .

This proves the claim.

7.3 Dynamics of Charged Particles

All further considerations depend on understanding the motion of test particles in
Kerr–Newman space–time. This will be investigated in this section.

7.3.1 Integrals of Motion

We shall now study the motion of a test particle with rest mass μ and charge q in
a space–time with metric gμν and electromagnetic potential Aμ . This will not be a
geodesic, as the Lorentz force generates a 4-acceleration. First, consider the non-
trivial case μ �= 0. To “deduce” the equations of motion we use the equivalence
principle. To this end, we make the initial assumption that space–time is flat, choose
an inertial frame, and express the known Lorentz force with respect to this inertial
frame in its relativistic form:

Fκ = qFκν
dxν

ds
,
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where Fμν is the tensor of the electromagnetic field, xμ(s) denotes the trajectory of
the particle, and s is the proper time along the trajectory. The equation of motion
becomes

μ
d2xκ

ds2 = qFκν
dxν

ds
.

We have to rewrite this in the generally covariant form. Besides the expression for
the 4-acceleration everything is already covariant. We must only write the accelera-
tion with the covariant derivative, and thus obtain

μ
D2xκ

ds2 = qFκν
dxν

ds
, (7.15)

where we introduced the useful shorthand

D2xκ

ds2 :=
d2xκ

ds2 +Γκρσ
dxρ

ds
dxσ

ds
.

Now, we simply postulate that the equation of motion (7.15) be valid in arbitrary
space–times. We see that for q = 0 this becomes the geodesic equation. Also note
the role of the parameter: it must be the proper time. We can also show that the
acceleration is perpendicular to the tangent vector:

dxρ

ds

(
D
ds

dxσ

ds

)
gρσ =

q
μ

Fρσ
dxρ

ds
dxσ

ds
= 0 ,

that is that the norm of the tangent vector is preserved under these equations.
Equation (7.15) follows from the variation principle for the action:

S =
∫

dλ
(
μ
√

gρσ ẋρ ẋσ +qAρ ẋρ
)

.

Here ẋκ = dxκ/dλ , with λ an arbitrary parameter and Aκ an electromagnetic po-
tential yielding the field Fρσ . This can be shown as follows. Denote the expression√

gρσ ẋρ ẋσ by l. Note that ṡ = l. Then the Lagrangian is L = μ l + qAκ ẋκ and the
left-hand side of the Euler–Lagrange equation is

∂L
∂xκ

− d
dλ

∂L
∂ ẋκ

=
μ
2l

gρσ ,κ ẋρ ẋσ +q∂κAρ ẋρ − d
dλ

(μ l−1gκρ ẋρ +qAκ)

=
μ
2l

gρσ ,κ ẋρ ẋσ +q∂κAρ ẋρ −μgκρ

(
ẋρ

l

)◦
− μ

l
gκρ,σ ẋρ ẋσ −q∂ρAκ ẋρ

= −μgκρ

(
ẋρ

l

)◦
− μ

2l
(gκρ,σ +gκσ ,ρ −gρσ ,κ)ẋρ ẋσ +qFκρ ẋρ .
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This implies that
μ
l

(
ẋκ

l

)◦
+
μ
l2Γ

κ
ρσ ẋρ ẋσ =

q
l

Fκρ ẋρ .

Equation (7.15) follows by substituting ṡ for l, qed.
The practical use of the variation principle is that we can use it to quickly find

integrals of motion. If the Lagrangian is independent of one coordinate, then the
corresponding momentum is conserved. Thus let ∂κL = 0 for some κ . Then

∂
∂ ẋκ

L = const .

From the expression for the Lagrangian, we find that

∂
∂ ẋκ

L = μgκρ
dxρ

ds
+qAκ ,

since ṡ =
√

gμν ẋμ ẋν . We can write the right-hand side as a scalar function by intro-
ducing the vector χμ = δ μκ . Then

Pχ := χμ
(
μgμρ

dxρ

ds
+qAμ

)

is conserved along the trajectory of the particle. The covariant 4-momentum of the
test particle is

pμ = μgμν
dxν

ds
.

Thus we can write
Pχ = χμ(pμ +qAμ) .

We can now mix the particles with photons. Since then q = 0 and χμ is a Killing
vector field, Pχ is also conserved for photons.

Example: From the form of the metric and the potential with respect to Kerr–
Newman coordinates we see that ξ μ and ϕμ satisfy the conditions on χ . The corre-
sponding conserved quantities can be expressed in components with respect to the
advanced Kerr–Newman coordinates as follows:

e = pv +qAv, − j = pη +qAη . (7.16)

The quantity in question is also conserved by scattering processes. Assume that
n charged particles with 4-momenta pμ1 , . . . , pμn and charges q1, . . . ,qn collide at the
point p and that n′ particles with momenta p′μ1 , . . . , p′μn′ and q′1, . . . ,q

′
n′ are generated

(Fig. 2.1). Then we must have

pμ1 + . . .+ pμn = p′μ1 + . . .+ p′μn′ ,

and
q1 + . . .+qn = q′1 + . . .+q′n′ .
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Multiply the first equation by gμνχν at p and add the second one multiplied by
Aμχμ at p. Then we obtain

P1χ + . . .+Pnχ = P′
1χ + . . .+P′

n′χ ,

which is the desired conservation law.
We want to express the condition for χμ in arbitrary coordinates. In adapted

coordinates {x̄μ} it is equivalent to the following three equations:

χ̄μ = δ μκ ,

χ̄μ∂μ̄ ḡρσ = 0 ,

χ̄μ∂μ̄ Āρ = 0.

We already transformed the first two equations into general coordinates and obtained
the Killing equation:

gμν ,ρχρ +gρνχ
ρ
,μ +gμρχ

ρ
,ν = 0.

In an analogous way we obtain the symmetry equation for the potential (exercise):

Aμ,ρχρ +Aρχ
ρ
,μ = 0.

A vector field satisfying this equation is called symmetry vector field of the poten-
tial. If the vector field χμ is a Killing vector field and a symmetry vector field for the
potential at the same time—in this case we say that χμ is a symmetry vector—then
the corresponding quantity Pχ is conserved along the trajectory of the particle. This
can also be proven directly from the Killing equation and the symmetry equation for
the potential (exercise).

7.3.2 The Equatorial Plane and the Axes of Symmetry

In general there exist only two independent symmetry vector fields in the Kerr–
Newman space–time. The conservation laws corresponding to these fields are not
sufficient to reduce the general problem to simple quadratures. There is also an
integral of motion quadratic in the components of the momentum—the so-called
Carter integral [5]. However, in the special case of motion in the equatorial plane
ϑ = π/2 or along the axes of symmetry ϑ = 0 or ϑ = π , we can do with only the
former two quantities.

We have to start by showing that the respective motion remains in these sub-
manifolds if they start there with an initial velocity tangent to these sub-manifolds.
Something similar can be shown in general. We assume that

1. the Lagrangian of the particle is invariant with respect to the transformation
xμ �→ x′μ in the configuration space M ,
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2. this transformation is the identity on the sub-manifold N of the configuration
space M , and

3. there is a neighborhood U of N in M so on each point r ∈U \N the transfor-
mation is non-trivial.

Let the trajectory xμ(λ ) be a solution to the Euler–Lagrange equation for the initial
data xμ(0) = r ∈ N and ẋμ ∈ TrN with xμ(λ0) �∈ N for some λ0. Without loss
of generality we can assume that xμ(λ0) ∈ U . Then x′μ(λ0) �= xμ(λ0). That is, the
solution x′μ(λ ), which can be obtained from xμ(λ ) by applying the transformation,
is different from the original one. On the other hand, it has the same initial data
which leads to a contradiction.

This general fact can be applied to the equatorial plane by using the reflection at
the equatorial plane ϑ �→ π−ϑ and to the axes of symmetry by using the rotation
ϕ �→ ϕ+ c.

We are only interested in the region outside the horizon and we can thus work
with the Boyer–Lindquist metric (7.1) and the corresponding potential (7.2).

7.3.2.1 The Equatorial Plane

The integrals of motion with ϑ = π/2 are

gtt ṫ +gtϕϕ̇+
Qq
r

= e , (7.17)

gtϕ ṫ +gϕϕϕ̇− aQq
r

= − j , (7.18)

gtt ṫ
2 +2gtϕ ṫϕ̇+gϕϕϕ̇2 − r2

Δ
ṙ2 = μ2 , (7.19)

where we chose the parameter λ in the following way: for massive particles
λ := s/μ , and for photons λ is simply the physical parameter. Hence we avoid
the difficulty that massive particles can be charged and hence do not move along
geodesics. For convenience, we rewrite the (7.17), (7.18), and (7.19) in matrix form.
We define the following matrices:

g =
(

gtt gtϕ
gϕt gϕϕ

)
, h =

(
1
−a

)
, p =

(
e
− j

)
, u =

(
ṫ
ϕ̇

)
,

where

gtt dt2 +2gtϕ dt dϕ+gϕϕ dϕ2 :=
Δ
r2 (dt −a dϕ)2 − 1

r2

[
a dt −

(
r2 +a2)dϕ

]2
.

Then (7.17), (7.18), and (7.19) can be written as follows:

gu+h
Qq
r

= p ,
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u
gu− r2

Δ
ṙ2 = μ2 .

Outside of Δ= 0 we can solve these equations for the derivatives:

ṙ2 +Veff(r) = 0 , (7.20)

u = g−1
(

p− Qq
r

h
)

, (7.21)

where

Veff(r) = − Δ
r2

(
p
− Qq

r
h


)
g−1

(
p− Qq

r
h
)

+
Δ
r2 μ

2 . (7.22)

Substituting for g, p, h, and Δ into (7.22) yields

Veff(r) = Q2(ae− j)2r−4 +2
[
Qaq(ae− j)−M(ae− j)2]r−3

+
[

j2 −a2e2 +μ2(a2 +Q2)−Q2q2]r−2 +2(Qqe−Mμ2)r−1 − e2 +μ2 .
(7.23)

Veff(r) is an effective potential in the sense that it is not valid for all particles with
given mass μ and charge q but depends on the values for e and j. It equals μ2 − e2

at r = ±∞. The motion is only possible where Veff(r) is negative. For example, all
particles with |e| > μ can reach the asymptotic region r = ∞.

7.3.2.2 The Axes of Symmetry

The motion along the axes of symmetry (ϑ = 0,π) can be studied in an analogous
way. The coordinates in this two-dimensional sub-manifold are t and r. The integrals
of motion yield:

ṙ2 +V a
eff(r) = 0 ,

ṫ =
r2 +a2

Δ

(
e− Qqr

r2 +a2

)
,

with

V a
eff(r) = μ2 Δ

r2 −
(

e− Qq
r2

)2

.

7.4 Energetics of Black Holes

In astrophysics, black holes play the role of a rich reservoir of energy. Whenever a
very efficient source is needed to explain the huge energy output in an astrophysical
object, a black hole is postulated (x-ray binaries, active galactic nuclei, etc.). We will
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now study why this is the case. In general, there are two kinds of energy that can be
extracted from a region containing a black hole:

1. the black hole’s own energy,
2. the energy of the test particles in the field of the black hole.

7.4.1 Available Energy of a Black Hole

(following the diploma thesis of Ch. Farrugia, Bern 1978)
It turns out that rotation and electric energy of black holes can be extracted.

Only the rotation energy seems to have astrophysical significance because no viable
process of charging black holes could be thought of. The gravitomagnetic field as-
sociated with the rotation seems to play a crucial role in the origin of the so-called
jets [6, 7]. These are huge geysers (of power in a broad interval around 1038 Js−1) of
relativistic particles gushing in two opposite directions from young active galactic
nuclei, sometimes hundreds of kiloparsec into the space.

For the rest of the theory we can restrict ourselves to the external Kerr–Newman
solution as it contains all events outside a black hole which emerged from a collapse.

7.4.1.1 The Ergosphere

The symmetry vectors of the Kerr–Newman solution are χμ = αξμ +βϕμ . Let us
examine the integral curves of these vector fields. These are the curves xμ = xμ(λ )
whose tangential vectors agree with the vector field. Hence, an integral curve corre-
sponding to the vector field with two arbitrary constants α and β is given by t =αλ ,
ϕ = βλ , r = const, and ϑ = const. This curve is only closed for α = 0. If in addition
β = 1, then χμ = ϕμ and ϕμ infinitesimally generates the rotation around the axis
of symmetry. That is, the transformation λ �→ λ +ψ is such a rotation by angle ψ .
Hence the vector ϕμ is uniquely characterized, including its normalization. Simi-
larly, the vector ξ μ is characterized by the fact that it generates the translation of the
proper time of asymptotic observers.

Let us examine the significance of the corresponding conserved quantities, as
they will play an important role. We denoted Pχ for χμ = ξ μ by e and for χμ = ϕμ
by − j. We see that the electromagnetic term in Pχ vanishes in the limit r = ∞ as
the potential decays like r−1. The rest is identical to the conserved quantities of
uncharged particles. We already know the meaning of this (cf. Sect. 2.8.2): e is the
energy of the particle and j the angular momentum with respect to the symmetry
axis, both with respect to the asymptotic observer.

Consider an uncharged, massive particle with 4-velocity uμ at the point p of
space–time. The particle has energy e = μgμνξ μuν . If we assume that ξ μ is time-
like at p then e has a positive minimum with value μξ , where ξ =

√
gμνξ μξν is the

norm of the Killing vector. This minimum is assumed for particles with uμ = ξ−1ξ μ
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(exercise), that is a particle “at rest” with respect to the asymptotic observer. We
thus want to say that ξ is the gravitational potential with respect to the asymptotic
observer. This is in analogy to the Newtonian theory, where the minimal energy of a
particle in the gravitational field in a fixed point is equal to the mass of the particle
times the potential.

However, if the vector ξ μ is space-like at p, then the energy of the particle at
p has no minimum, and we can have negative energy with arbitrarily large abso-
lute value (exercise). Consequently, in the region where ξ μ is space-like, there is
no analogue to the gravitational potential (no particle there can be at rest with re-
spect to the asymptotic observer). The part of this region outside of the horizon
is called ergosphere. It is defined by the inequality M +

√
M2 −a2 −Q2 < r <

M +
√

M2 −a2 cos2ϑ −Q2 (Fig. 7.4). The boundary of the ergosphere is thus given
by r2 +a2 cos2ϑ −2Mr +Q2 = 0, it touches the horizon at the poles ϑ = 0,π , and
lies outside of the horizon for all other values of ϑ , provided a �= 0. There is no
ergosphere for a = 0.

Now consider a charged particle. Its minimal energy at a point p with time-like
ξ μ is μξ +qAμξ μ . This is analogous to the energy of a similar particle in the non-
relativistic theory which is μ× gravitational potential + q× electrostatic potential.
We can therefore say that the term Φ = Aμξ μ is the electrostatic potential with
respect to the asymptotic observer.

The region outside the horizon, where μgμνξ μuν + qAμξ μ—the energy of a
particle with charge q with respect to the observer at infinity—can be negative, is
called generalized ergosphere. It is clear that the generalized ergosphere always
contains the ergosphere. The boundary of the generalized ergosphere is thus given
by either the equation μξ +qΦ= 0 when the norm of qΦ is negative at points with
ξ = 0, or by ξ = 0 otherwise.

7.4.1.2 Penrose Processes

The significance of the ergosphere is that it can be used to extract energy from
the black holes. This is based on the following assumption: if a particle with small

Fig. 7.4 Penrose process.
A test particle with energy
e1 > 0 comes from infinity
and decays at point p into two
particles with energies e2 > 0
and e3 < 0

E

H

e1

e2

e3
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values of e, j, and q falls through the horizon, then the parameters M, J, and Q of
the black hole change like

δM = e, δJ = j, δQ = q.

This assumption is physically natural, it means that the total energy, the total angular
momentum, and the total charge is conserved. If a particle vanishes in the black
hole, the parameters of the black hole change accordingly. However, the proof is too
difficult for us, as the small perturbations in the metric and the potential caused by
the particle can no longer be neglected (the test particle approximation is based on
such neglecting). We will thus make this assumption without proof (for a proof, see
e.g., [4, 8]). Then our claim immediately follows as e can only be negative in the
presence of an ergosphere.

Such particles can only exist inside the ergosphere, since e is conserved and must
be non-negative outside the ergosphere. Thus, no such particle can be thrown into
the black hole from the asymptotic region! If the energy gain were only possible in
close vicinity of the black hole, there would not be much practical use of it. Thus
we have to construct a process that can transfer this energy to the asymptotic region,
at least in principle.

This is what the Penrose processes achieve [9]. The idea is to utilize the conser-
vation of e, j, and q in scattering processes. We throw one particle with e1, j1, and q1

from the asymptotic region into the ergosphere. There it decays into two particles,
one with e2, j2, and q2 and another one with e3, j3, and q3. We have e1 = e2 + e3,
j1 = j2 + j3, and q1 = q2 +q3. If e3 < 0 then e2 > e1. Provided the third particle falls
into the black hole, it does not need to leave the ergosphere. If the second particle
again reaches the asymptotic region, the observers there have gained energy. Such
processes are actually possible, but we do not want to go into details here.

7.4.1.3 Second Law of Black Hole Energetics

We shall investigate, which particles can be captured by the black hole, and how the
parameters of the black hole are affected. We are working at the horizon and thus
need Kerr–Newman coordinates. If the trajectory of the particle is given by v(λ ),
η(λ ), r(λ ), and ϕ(λ ) then it crosses the horizon at r = r+ if dr/dλ < 0 at that
point. That is,

pr|r=r+ < 0 .

We want to express this condition in terms of e, j, and q of the particle’s trajectory.
To this end, we rewrite pr in terms of the covariant components of the momentum
and the contravariant metric (7.11),

pr = − r2 +a2

Σ
pv −

Δ
Σ

pr −
a
Σ

pη , (7.24)

and use (7.16), to express pv and pη in terms of e, j, and q:
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pv = e− qQr
Σ

,

pη = − j +
qQrasin2ϑ

Σ
.

Evaluating this at the horizon yields the inequality

e >
a j +Qr+q

a2 + r2
+

. (7.25)

Equation (7.25) is called entry condition.
Equation (7.25) holds for all, in particular space-like, curves. To show that there

are particles that enter this way, we need some more work. We have to show that
there is a time-like trajectory for each value of the quantities e, j, q, M, a, Q, v, η ,
and ϑ , which satisfies the entry condition. The coordinates of the point of entry, the
parameters of the black hole, (M,a,Q), and the parameters of the particle, (e, j,q),
determine the components pv and pη . The components pϑ and pr can then be chosen
arbitrarily.

The condition that the curve be non-space-like is gμν pμ pν ≥ 0. Evaluated at the
horizon it yields

(apv + pη)
2 +2pr

[(
r2
+ +a2)pv +apη

]
+ p2

ϑ ≤ 0 .

From (7.24) we infer that
(
r2
+ +a2)pv +apη = −(Σpr)r=r+ .

The right-hand side is positive, thus

pr ≤− (apv + pη)
2 + p2

ϑ
2
[(

r2
+ +a2

)
pv +apη

] .

Hence we can always choose such a pr without affecting inequality (7.25). Thus
there always exists at least one particle which satisfies (7.25), qed.

There is a surprising interpretation of the entry condition (7.25). Calculate the
growth of the area of the black hole (7.13),

dA = 8π(r+ dr+ +a da) .

If we substitute
√

M2 −a2 −Q2 by r+ − M everywhere after differentiation, we
obtain for dr+ that

dr+ =
r+

r+ −M
dM− a

r+ −M
da− Q

r+ −M
dQ .

Then

r+dr+ +a da =
r2
+ +a2

r+ −M
dM− a

r+ −M
dJ− Qr+

r+ −M
dQ ,
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where we substituted da = d(J/M). Altogether this yields

dA =
8π

r+ −M

[(
r2
+ +a2)dM−a dJ−Qr+ dQ

]
. (7.26)

If we further use the assumption that dM = e, dJ = j, and dQ = q we obtain that

dA =
8π(r2

+ +a2)
r+ −M

(
e− a j +Qr+q

r2
+ +a2

)
.

It follows that inequality (7.25) is equivalent to the simple condition

dA > 0 . (7.27)

The area of the black hole must increase in every process with particles entering
the black hole. This is the so-called second law of black hole energetics [10]. In
the form of (7.27) it can be proven in a much more general setting, for example for
colliding black holes [11].

7.4.1.4 First Law of Black Hole Energetics

We can solve (7.26) for the differential of the mass:

dM =
κ
8π

dA+ω dJ +φ dQ , (7.28)

where the coefficients κ , ω , and φ are defined as follows:

κ =
r+ −M

r2
+ +a2

, ω =
a

r2
+ +a2

, φ =
Qr+

r2
+ +a2

.

Equation (7.28) is the so-called differential mass formula. It describes the change
of the total mass of the black hole depending on the changes of area, the angular
momentum, and the charge. It is sometimes also called the first law of black hole
energetics [10]. Let us examine the meaning of the coefficients κ , ω , and φ in the
differential mass formula.

From the metric of the event horizon, given by (7.12), we can see that a light-like
vector Lμ , which is tangential to the horizon, has the following components with
respect to the coordinates (v,η ,r,ϑ):

Lμ =
(

1,
a

r2
+ +a2

,0,0

)
.

The normalization is such that

Lμ = ξ μ +
a

r2
+ +a2

ϕμ , (7.29)
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where ξ μ = (1,0,0,0) is the Killing vector field of stationarity and ϕμ = (0,1,0,0)
the one of axi-symmetry. The vector Lμ represents the only future-pointing causal
direction along the horizon. Intuitively, it can be interpreted as the direction into
which the horizon is moving. The relation (7.29) then means that the horizon is
rotating with respect to the observer at infinity. The angular velocity is given by ω .
This yields the interpretation of ω . Note that the rotation is rigid, that is ω = const
along the horizon.

Another important property of the vector field Lμ is that it is a symmetry of the
whole space–time if we regard it as a linear combination of two vector fields of
symmetry with constant coefficients. It is the only causal vector field of symmetry
which has the above normalization. The square of the norm of this vector is

L = gμνNμNν

=
Δ
Σ

(
r2
+ +a2 cos2ϑ

r2
+ +a2

)2

− a2 sin2ϑ
Σ

(
r2 − r2

+

r2
+ +a2

)2

= b(ϑ)(r− r+)+O(r− r+)2,

where
b(ϑ) =

r+ − r−
(r2

+ +a2)2
(r2

+ +a2 cos2ϑ) > 0,

and O(xn) is a term of order xn. It follows that L > 0 above the horizon. On the
horizon we have L = 0. Hence Lμ is the only vector field of symmetry which is
non-space-like in a whole neighborhood of the horizon in external Kerr–Newman
space–time (where r ≥ r+).

The Killing vector field Lμ is thus time-like for observers which are arbitrarily
close and above the horizon. For such observers, which are at rest relative to the
horizon,

√
L plays the role of the gravitational potential and AμNμ the role of the

electric potential. Furthermore, we have that

lim
r=r+

gμν
√

L,μ
√

L,ν = −κ2 ,

lim
r=r+

AμNμ = φ

(exercise). This yields the interpretation of the coefficients κ and φ : κ is the surface
gravity and φ the electric potential of the black hole (for all local observers near the
horizon). It is important to remark that all three quantities ω , κ , and φ need not be
constant at the horizon according to their definition. The fact that they are constant
is sometimes referred to by the term “0th law” of black hole dynamics. Formally,
the constantness resembles an equilibrium condition, similar to the condition that
temperature and pressure be constant in thermodynamics.

7.4.1.5 Irreducible Mass

The entry condition can be used to answer the question about the maximal energy
gain. Inequality (7.25) implies that the energy of a particle falling into the black
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hole cannot be arbitrarily small. The energy gained for given values of j and q (and
a given black hole) cannot exceed the value

esup = −a j +Qr+q

a2 + r2
+

.

This value cannot be achieved, it is only possible to get arbitrarily close. The reason
is that for this value we have (pr)r=r+ = 0 and thus the particle moves tangential to
the horizon. This is only possible in a light-like direction, which is not achievable
for massive particles. Also for light-like particles this state cannot be created from
the outside.

Ideal processes, where equality holds in the above equation, are called reversible
for the following reason. Consider a process in which a particle with e1, j1 and q1

falls into a black hole with parameters M, J, and Q. There, the parameters of the
hole become M′ = M + e1, J′ = J + j1, and Q′ = Q + q1. Does there exists another
process in which a particle with e2, j2, and q2 falls into the black hole, so that
the final parameters of the black hole, M′′ = M + e1 + e2, J′′ = J + j1 + j2, and
Q′′ = Q + q1 + q2, agree with the initial ones? Obviously, this implies e1 = −e2,
j1 = − j2, and q1 = −q2. The last two equations, together with inequality (7.25)
imply:

e1 >
a j1 +Qr+q1

a2 + r2
+

, e2 > −a′ j1 +Q′r′+q1

a′2 + r′2+
,

where a′ = J′/M′ and r′+ = r+(M′,J′,Q′). To first order the primes in the second
equation can be omitted. It then follows that e1 +e2 > 0, and equality can only hold
if both processes are ideal.

To proceed, we need the expression of the energy of the black hole in terms of
the parameters A, J, and Q. To this end, we rewrite relation (7.13) in terms of M, J,
and Q:

A = 4π

[(
M +

√
M2 − J2/M2 −Q2

)2

+
J2

M2

]

= 4π
(

2M2 −Q2 +2
√

M4 − J2 −M2Q2
)

,

and solve this equation for M:

M =
1
2

√√√√4π
A

[(
A

4π
+Q2

)2

+4J2

]

. (7.30)

This is the so-called mass formula. The differential mass formula is simply its dif-
ferential.

The mass formula can be used to determine the total available energy of a black
hole. Consider a black hole with parameters A, J, and Q. Its total energy is given
by the mass formula. Now energy can be extracted via Penrose processes, but not
more than the limit for reversible processes. This decreases the rotational energy
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and the electric energy of the black hole so that A remains constant until the state
with minimal mass for the constant A is reached. The minimum can be computed
from (7.30). The first derivatives of M are

∂M
∂J

=
4π
A

J
M

,
∂M
∂Q

=
4π
A

(
A

4π
+Q2

)
Q

2M
.

It follows that the only extremum of this function is at J = Q = 0. It is an absolute
minimum, as one easily proves the inequality

M(A,J,Q) > M(A,0,0)

for all J �= 0 and Q �= 0 by taking the square of the expression for M.
This is a Schwarzschild black hole with area A, from which no more energy can

be extracted. According to the mass formula, its energy is

M2
irr =

A
16π

.

This energy is called the irreducible energy of the black hole with parameters A, J,
and Q. The available energy of such a black hole thus equals to the difference of the
total mass, given by the mass formula, and the irreducible mass.

The similarity of our formulas to the fundamental laws of thermodynamics is
striking. If somehow an entropy of a black hole could be introduced so that

S = bA , (7.31)

where b is a constant and the quantity T ,

T =
κ

8πb
, (7.32)

could be understood as a temperature, then there would be more than formal simi-
larity. So far the nature of temperature could be justified to some extent. As it turned
out (theoretically), in the presence of a black hole, a quantum gas can only be in
equilibrium at the temperature (7.32) with b = αkl−2

P (k = Boltzmann constant,
α = a numerical coefficient close to one, LP = Planck length) [12]. A similar under-
standing of formula (7.31) has not been reached up to now.

7.4.2 Energy of Particles in the Field of a Black Hole

We have seen that the part of the energy of a black hole which is stored in its charge
and rotation can be extracted. However, a large quantity of energy can be gained if
only a black hole is present, without reducing its energy (in fact it will grow in most
cases). The source of the energy is the rest mass of the particles which approach
the black hole. The minimal energy of an uncharged particle with respect to an
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observer at infinity is given by the gravitational potential ξ (we will stay out of
the ergosphere). In the asymptotic region we have ξ = 1, thus the energy equals the
rest mass μ . At the ergosphere ξ = 0 and thus the energy is zero. If the rest of the
energy, μ(1− ξ ), can be transferred to the asymptotic region, then we gain up to
100% of the rest energy of the particle. In principle, we can get arbitrarily close to
this efficiency.

A real system has always less efficiency. The problem is to decelerate a parti-
cle to energy μξ . We shall now construct a model of such a system, namely the
accretion disc. As we are interested in the basic principle, we shall simplify the
model severely. (The research on accretion discs is nowadays a large and compli-
cated field of its own [13].) We assume that around a Kerr black hole (Q = 0) there
are uncharged dust particles moving along practically circular orbits in the equato-
rial plane. There is friction among the particles which heats them up. They radiate
the thermal energy away and sink to lower circular orbits. As they do not exactly
follow the circular orbits, these orbits need to be stable. This works before they
reach the so-called last stable orbit, then they quickly fall into the black hole with-
out much radiation. This will increase or decrease the angular velocity of the black
hole and its energy will grow in general. A part of the rest mass of the particles
will, however, be radiated to the asymptotic region. The subsequent calculations are
based on [8].

7.4.2.1 Energy and Angular Momentum of the Circular Orbits

Consider the circular orbits in the equatorial plane of the Kerr space–time. These
satisfy (7.20), (7.21), and (7.23) with Q = q = 0. In particular

Veff = −2M( j−ae)2

r3 +
j2 −a2e2 +μ2a2

r2 − 2Mμ2

r
− e2 +μ2 . (7.33)

The effective potential and its derivative must be equal to zero along such an orbit,
and the orbit is stable if the second derivative is positive there. We use the scale in-
variance of the problem to get rid of two parameters. Introducing the dimensionless
quantities

ē =
e
μ

, j̄ =
j
μr

, (7.34)

and

α =
a
M

, p =

√
M
r

, (7.35)

we can rewrite the potential and its derivatives in the form

1
μ2 Veff = −2p2 ( j̄−α p2ē

)2
+ j̄ 2 −α2 p4ē2 − ē2 +α2 p4 −2p2 +1 , (7.36)

r
2μ2

∂Veff

∂ r
= 3p2 ( j̄−α p2ē

)2 − j̄ 2 +α2 p4ē2 −α2 p4 + p2 , (7.37)
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r2

2μ2

∂ 2Veff

∂ r2 = −12p2 ( j̄−α p2ē
)2

+3( j̄2 −α2 p4ē2)+3α2 p4 −2p2 . (7.38)

For a black hole we need a ≤ M, that is α ≤ 1. Furthermore, it does not make sense
to consider circular orbits with a radius smaller than that of the horizon. That is
r ≥ M +

√
M2 −a2, which leads to p2 ≤ 1/(1 +

√
1−α2). In summary the ranges

of α and p are

0 ≤ α ≤ 1 , 0 ≤ p2 ≤ 1

1+
√

1−α2
≤ 1 . (7.39)

We consider the system Veff = 0 and V ′
eff = 0 as equations for e and j, and assume

M, a, and r to be given. To simplify this task, we introduce new variables:

x = j̄−α p2ē , y = j̄ +α p2ē ,

so that

j̄ =
1
2
(y+ x) , ē =

1
2α p2 (y− x) . (7.40)

Equation (7.37) then yields

y = 3p2x+
p2 −α2 p4

x
. (7.41)

Inserting into (7.36) leads to the following quadratic equation for x2:
[
4α2 p6 −

(
3p2 −1

)2
]

x4 +2
(
α2 p6 −3p4 +α2 p4 + p2

)
x2 −

(
−α2 p4 + p2)2

= 0 .

The first miracle is that the discriminant is a square:

Δ= [2α p3(−α2 p4 +2p2 −1)]2 .

The solution therefore does not contain a square root:

x2 =
−α2 p6 −α2 p4 +3p4 − p2 −2ια p3

(
−α2 p4 +2p2 −1

)

4α2 p6 − (3p2 −1)2 ,

here ι is an arbitrary sign yielding both solutions of the quadratic equation.
The second miracle is that the numerator can be factorized and one can cancel as

follows:

− α2 p6 −α2 p4 +3p4 − p2 −2ια p3 (−α2 p4 +2p2 −1
)

=
(
2ια p3 +3p2 −1

)(
−ια p2 + p

)2
,

or

x = ι ′
p− ια p2

√
1−3p2 +2ια p3

, (7.42)

where ι ′ is another arbitrary sign.
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A simple calculation yields that (7.34), (7.40), (7.41), and (7.42) give the follow-
ing results for e and j:

e = ι ′ιμ
1−2p2 + ια p3

√
1−3p2 +2ια p3

, (7.43)

j = −ι ′μM
1−2ια p3 −α2 p4

p
√

1−3p2 +2ια p3
. (7.44)

Equations (7.43) and (7.44) yield four solutions (e, j), depending on two signs ι
and ι ′. Two of them correspond to a sign change of both e and j, which changes
the orientation of the tangent vector of the orbit. We can choose this sign so that
the resulting orbit is future oriented. We make the usual assumption that the time
orientation is given by the Killing vector ξ . Thus, where ξ is time-like, we must
have that e > 0 to give a future-oriented orbit. This is the case outside the ergosphere
r > 2M or p2 < 1/2. The numerator on the right-hand side of (7.43) is then positive
provided α is small enough. Thus for future-oriented orbits we must have

ι ′ι = 1 .

This yields ι ′ = ι and we obtain

e = μ
1−2p2 + ια p3

√
1−3p2 +2ια p3

, (7.45)

j = ιμM
1−2ια p3 +α2 p4

p
√

1−3p2 +2ια p3
. (7.46)

As it will turn out, this formula describes the future-oriented orbits in all cases.
Equations (7.45) and (7.46) are invariant with respect to the transformation

α �→ −α , j �→ − j , ι �→ −ι . (7.47)

Hence, it is sufficient to consider the cases with α ≥ 0 as the others can be obtained
by the transformation (7.47). We thus assume subsequently that α ≥ 0. From (7.46)
we then obtain that j > 0 if ι = +1, and j < 0 if ι = −1, since

1−2α p3 +α2 p2 = (1−α p3)2 +α2 p4(1− p2) ≥ 0 .

The sign ι therefore determines one of the two possible directions of the rotation,
the orbits with ι = +1 are co-rotating, the ones with ι = −1 are counter-rotating.
Equation (7.45) shows that the energy of the co-rotating orbits is different from the
counter-rotating ones if α �= 0. This is an important gravitomagnetic effect. Obvi-
ously the counter-rotating orbits are attracted more than the co-rotating ones. The
gravitomagnetic force thus has the opposite sign than the magnetic force in Maxwell
theory.
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Equations (7.45) and (7.46) simplify a lot in the Schwarzschild case, α = 0:

e = μ
1−2p2
√

1−3p2
, j =

ιμm

p
√

1−3p2
, (7.48)

and for the extreme black hole, α = 1. In this case we have the identities

1−3p2 +2ι p3 = (1− ι p)2(1+2ι p) , (7.49)

1−2p2 + ι p3 = (1− ι p)(1+ ι p− p2) , (7.50)

1−2ι p3 − p4 = (1− ι p)(1+ ι p+ p2 +−ι p3) , (7.51)

and we obtain

e = μ
1+ ι p− p2
√

1+2ι p
, (7.52)

j = ιμM
1+ ι p+ p2 − ι p3

p
√

1+2ι p
. (7.53)

7.4.2.2 Signature of the Circular Orbits

We now examine the conditions for the circular orbits to be time-like, light-like, or
space-like. Thus, we have to study the sign of the expression under the square root.
The square root always appears in the combination

μ
√

1−3p2 +2ια p3
.

Here μ2 is the norm of the vector tangent to the circular orbit, and thus the time-like
orbits have μ > 0, the light-like ones have μ = 0 and for the space-like ones μ is
purely imaginary. We can thus interpret the sign of the expression 1−3p2 +2ια p3

as the signature of the orbit. The space-like orbits can be considered as orbits on
which the particles have to travel faster than light to escape the drag of gravity.
Thus, we are only interested in

1−3p2 +2ια p3 ≥ 0 . (7.54)

Let us distinguish two cases:

1. ι = +1: In this case (7.54) is equivalent to

α ≥ 3p2 −1
2p3 .

If p2 ∈ [0,1/3) then (3p2 − 1)/(2p) < 0 and there are only time-like circular
orbits for all α ∈ [0,1]. If p2 ∈ [1/3,1] then we have
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0 ≤ 3p2 −1
2p3 ≤ 1

and there are non-space-like circular orbits for all

α ∈
[

3p2 −1
2p3 ,1

]
.

For p2 in the above interval, α = (3p2 −1)/(2p3) yields a light-like orbit.
2. ι = −1: This time we have

α ≤ 1−3p2

2p3 ,

which can only be satisfied if p2 ≤ 1/3, that is r ≥ 3M. The inequality

1−3p2

2p3 ≤ 1

is equivalent to 2p3 + 3p2 −1 ≤ 0. Identity (7.49) with ι = −1 implies that this
inequality only holds for p2 ≥ 1/4. In the interval p2 ∈ [0,1/4) we therefore have
time-like circular orbits for all α ∈ [0,1]. In the interval p2 ∈ [1/4,1/3] we have
time-like as well as light-like orbits, the former for α ∈ [0,(1−3p2)/(2p3)), and
the latter at α = (1−3p2)/(2p3).

In summary we find (in the original parameters M and a):

Co-rotating circular orbits

r ∈ (M,3M) r ∈ (3M,∞)

Time-like a >
√

r/M(3M− r)/2 ∀a
Light-like a =

√
r/M(3M− r)/2 None

Space-like a <
√

r/M(3M− r)/2 None

At r = 3M and a = 0 there is the light-like circular orbit in Schwarzschild space–
time and at r = M and a = M there is the co-rotating light-like circular orbit of the
extremal black hole.

Counter-rotating circular orbits

r ∈ (M,3M) r ∈ (3M,4M) r ∈ (4M,∞)

Time-like None a >
√

r/M(3M− r)/2 ∀a
Light-like None a =

√
r/M(3M− r)/2 None

Space-like ∀a a <
√

r/M(3M− r)/2 None

At r = 3M and a = 0 there is again the light-like circular orbit of Schwarzschild
space–time and at r = 4M and a = M the counter-rotating light-like orbit around an
extremal black hole.
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Note that the denominator in (7.45) can be rewritten as follows:

1−2p2 + ια p3 = (1−3p2 +2ια p3)+ p(p− ια p2) .

As α ≤ 1 and p2 ≤ p, both terms on the right-hand side have to be non-negative.
They can only vanish for ι = +1 and p = α = 1. This is the extremal black hole
and the circular orbit is light-like at the horizon. In any case we see that all circular
orbits have positive energy e.

It is interesting that the orbit at the horizon can be considered as a limit of co-
rotating time-like circular orbits in the space–time of an extremal black hole. We
thus let α = 1, that is a = M, and ι = +1. The limit r → M then is equivalent to
p → 1 with p < 1. Equations (7.52) and (7.53) yield

lim
p→1

e =
μ√
3

, (7.55)

lim
p→1

j =
2Mμ√

3
. (7.56)

This is only possible since there is an infinite redshift between the horizon and the
asymptotic region. As the orbits become light-like, their energy diverges for every
local observer. However, the infinite redshift obviously can render the corresponding
energy finite for an observer at infinity.

7.4.2.3 Stability of Circular Orbits

Another question we have to discuss is the stability of the circular orbits. Let us
examine the potential (7.33). It is a polynomial of order three in 1/r that increases
from −∞ near r = 0 to −e2 +μ2 near r = ∞. Its first extremum is therefore a max-
imum, which corresponds to an unstable circular orbit. The second extremum is a
minimum and thus implies a stable orbit. This requires V ′′

eff > 0, where we have to
insert the values for j and e which annihilate Veff and V ′

eff. We can also study the
equivalent inequality

r2

2p2 V ′′
eff +

3r
2p2 V ′

eff > 0 .

Equations (7.37) and (7.38) yield

−3( j̄−α p2ē)2 +1 > 0 .

Substituting x = j̄−α p2ē from (7.42) with ι ′ = ι leads to

3
(

p− ια p2
)2

1−3p2 +2ια p3 < 1 . (7.57)

If 1− 3p2 + 2ια p3 > 0, that is the circular orbit is time-like, then (7.57) can be
written in the form

3α2 p4 −8ια p3 +6p2 −1 < 0 (7.58)
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and vice versa, if (7.58) holds, the circular orbit is non-space-like. Inequality (7.58)
is therefore the condition for stability for non-space-like orbits with parameters ι
and p around a black hole described by α . Let us examine this inequality.

First, note that the left-hand side,

L(ι ,α, p) = 3α2 p4 −8ια p3 +6p2 −1 ,

has boundary values
L(ι ,α,0) = −1

and
L(ι ,α,1) = 3α2 −8ια+5 .

But
3α2 −8ια+5 = (5−3ια)(1− ια) ,

whence L(ι ,α,1) ≥ 0. Equality only holds for ια = 1, that is ι = 1 and α = 1.
For given ι and α , L is an increasing function of p in the interval (0,1). Indeed

dL
dp

= 12p(1− ια p)2 . (7.59)

Thus there exist exactly one solution p = p0(ι ,α) of the equation L = 0 in the
interval [0,1] and thus inequality (7.58) is equivalent to

p < p0(ι ,α) . (7.60)

Hence, the circular orbits are stable if and only if their radius satisfies

r ∈
(

M

p2
0(ι ,α)

,∞
)

,

and they are unstable otherwise. The orbit with radius

r0 =
M

p2
0(ι ,α)

is called the last stable orbit.
Let us consider the behavior of the last stable orbit. First we note that

p0(ι ,0) = 1/
√

6 ,

that is the last stable orbit of the Schwarzschild space–time lies at r0 = 6M indepen-
dent of ι . We furthermore have that

L(ι , p) = −(1− ι p)3(1+3ι p) ,

whence
p0(1,1) = 1 , p0(−1,1) = 1/3 .
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That is, the last stable co-rotating orbit lies at r0 = M and the counter-rotating one
at r0 = 9M.

The derivative of p0 with respect to α is given by the formula

∂ p0

∂α
= − ∂L

∂α

(
∂L
∂ p0

)−1

. (7.61)

We have that ∂L/∂ p ≥ 0 in view of (7.59) and

− ∂L
∂α

= 2ι p3(4−3ια p) . (7.62)

The term in parenthesis on the right-hand side is always positive and thus p0 in-
creases with α (from 1/

√
6 to 1) for ι = +1 and decreases (from 1/

√
6 to 1/3) for

ι = −1.
Finally, consider the behavior of the energy e0 and the angular momentum j0 on

the last stable orbit. There, by (7.57), we have 3x2 = 1. Equation (7.42) with ι ′ = ι
implies that |x| = ιx, that is x = ι/

√
3. Equations (7.40) and (7.41) yield:

e =
μ

2α p2

[
(3p2 −1)x+

p2 −α2 p4

x

]
,

j =
μM
2p2

[
(3p2 +1)x+

p2 −α2 p4

x

]
,

whence

e =
ιμ

2
√

3

(
6p2

0 −1

α p2
0

−3α p2
0

)
,

j =
ιμM

2
√

3

(
6p2

0 +1

p2
0

−3α2 p2
0

)
.

These expressions can be simplified further by using the identity L(ι ,α, p0) = 0:

e =
μ p0√

3
(4−3ια p0) , (7.63)

j =
2ιμM√

3
(3−2ια p0) . (7.64)

A simple calculation using (7.61) yields

de0

dα
= − ιμ

3
√

3

p2
0

(1− ια p0)2 . (7.65)

Hence the energy of the last stable orbits decreases in the co-rotating case and in-
creases in the counter-rotating case.
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In summary: for co-rotating circular orbits and increasing a

1. r0 decreases from 6M at a = 0 to M at a = M.
2. e0 decreases from (2

√
2/3)μ at a = 0 to (1/

√
3)μ at a = M .

For counter-rotating circular orbits and increasing a

1. r0 increases from 6M at a = 0 to 9M at a = M.
2. e0 increases with from (2

√
2/3)μ at a = 0 to (5

√
3/9)μ at a = M .

In particular we have that 2
√

2/3 ≈ 94.3%, 1/
√

3 ≈ 58%, and 5
√

3/9 ≈ 95.9%.
The energy efficiency by decelerating the particles thus lies between 5.7 and 42%
for the co-rotating and between 5.7 and 4.2% for the counter-rotating circular orbits.

7.4.2.4 Time Variability

In a realistic accretion disc the temperature is not distributed homogeneously, but
there are hotter and colder regions. The hotspots create most of the radiation. This
radiation then shows an approximate periodic structure, which agrees with the pe-
riod of rotation of the spot. Let us compute the corresponding frequency.

A circular orbit has the form

t = ṫλ , ϕ = ϕ̇λ , r = r0 , ϑ = π/2 ,

where ṫ and ϕ̇ result from (7.21) with Q = 0 and are constant. A period corresponds
to the interval Δλ = 2π/ϕ̇ in λ . The two points of the orbit which differ by Δλ
thus have the same coordinates ϕ , r, and ϑ . The difference in the t-coordinate is
Δt = 2π ṫ/ϕ̇ . Imagine that at each of these points a light signal is emitted to an ob-
server at infinity. These signals travel along two light-like autoparallels. The second
one arises from the first one by a translation of t by Δt, as the symmetry does not
change the properties of autoparallels and the trajectory of the observer. But t is the
proper time of the observer. We thus arrive at the important result that the frequency
measured by an asymptotic observer equals ϕ̇/ṫ.

From equation (7.21) we obtain
(

ṫ
ϕ̇

)
= g−1

(
e

− j

)
.

A simple calculation implies

g−1 =
1
Δ

⎛

⎜
⎝

2M
r

a2 + r2 +a2 2M
r

a

2M
r

a
2M
r

−1

⎞

⎟
⎠ ,

whence
ϕ̇
ṫ

=
2α p4re+

(
1−2p2

)
j

r2 (1+α2 p4 +2α p6)e−2α p4r j
.
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Substituting for e and j from (7.45) and (7.46) yields the following relation for the
frequency

ν =
p3

1+ ια p3

1
2πM

.

This holds for arbitrary circular orbits. The highest frequencies arise from the edge
of the disc, that is from the last stable orbits where p = p0. In Schwarzschild space–
time (α = 0) this is

ν =
1

6
√

6

1
πM

=
1√
6

1
2πr0

,

for an extremal black hole (α = 1) with ι = +1

ν =
1

4πM
=

1
2

1
2πr0

,

and with ι = −1

ν =
1
52

1
πM

=
9
52

1
2πr0

.

Note that the expression 2πr0 gives the length of the orbit only in the case α = 0. In
the general case the length of the orbit with radius r is given by

2πR = 2πr
√

1+2α p3 +α2 p4 .

For α = 1 and ι = +1 this yields

ν =
1

2πR
.

This is a rather astonishing formula, as this frequency already includes the infinite
redshift between the circular orbit and infinity. Nevertheless, this frequency looks
like the orbit has been traversed with light speed, as it indeed has been.

More about the orbits of test particles can be found in [8].

7.5 Exercises

1. Show that the metric (7.1) is asymptotically flat for r →−∞ and that the asymp-
totic observers there see the field of an object with mass −M, angular momentum
J = −aM, and charge −Q.
Hint: introduce a new radial coordinate r′ = −r.

2. Consider a metric of the form

ds2 = Aαβ (x)
(
eαμ dxμ

)(
eβν dxν

)
,

where Aαβ (x) is a matrix with scalar elements and {eαμ (x)} is a basis for the
covectors.
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Show:

(a) The signature of the metric is the signature of Aαβ ,
(b) detgμν = detAαβ (deteαμ )

2, and

(c) gμν = (A−1)αβ eμαeνβ , where {eμα} is a basis dual to the basis {eαμ}, that is

eμαeβμ = δβα .

3. Show that the curve v = v0, η = η0, r = −λ , and ϑ = ϑ0 is a light-like geodesic
of the Kerr–Newman metric.

4. Show that the vector field ξ μ(x) is a symmetry of the potential Aμ(x) if and
only if

Aμ,ρξρ +Aρξ
ρ
,μ = 0.

5. Deduce the conservation law Ṗξ = 0 directly from the Killing equation for the
metric and the symmetry equation for the potential.

6. Deduce the equations of motion (7.20) and (7.21) and show that along a future
pointing trajectory with decreasing (or increasing) coordinate r only one of the
pairs (u,ξ ) and (v,η) can be regular at the horizon.

7. Show that the energy e = pμξ μ of a particle with respect to asymptotic observers
has a minimum at each point of the space–time where the Killing vector field is
non-space-like and that there is no minimum if ξ μ is space-like.

8. Compare the rotational energy of black holes to the rotational energy of a simple
Newtonian model for a star: a rigid ball with mass MS, radius RS, and constant
density. Express the energy of the star as a function of the radius and the angular
momentum (be careful: the velocity at the equator should be non-relativistic!).
Set the irreducible mass of the black hole to MS, and choose some interesting
values, for example the solar mass, etc.
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Ω-diagram, 183–186
3-space, 57
4-potential, 93

around black hole, 243

absolute luminosity, 188
acausality, 200
accretion disc, 263

efficiency, 271
action, 101–102

general covariance of, 101
of gravitation, 127

advanced time, 219, 247
affine connection, 7, see apparent force, 10–13,

see Christoffel symbols, see parallel
transport, 69, 89, 90, 106, 108, 128, 130,
136, 137

components of, 23, 90, 171
curvature of, 25
defines acceleration, 24
Einstein’s, 23, 26
flat, 26, 30
metric, 13, 42, 111–114, 123, 127, 129
Newton’s, 13

affine parameter, 6, 21, 43, 153, 169, 207, 219,
230

angular momentum
total, 145

apparent force, 3, 4, 7, 22, 23, 29
apparent luminosity, 188
asymptotic angular momentum, 80
asymptotic momentum, 80
asymptotic region

defined, 77
autoparallel, 11, 12, 21–23, 31, 42, 44, 49, 55,

59, 152, 169, 271
conservation laws for, 71

equation of, 43, 59, 81, 84, 90
autoparallels

relative acceleration of, 27
axes of symmetry

in Kerr–Newman space-time, 254

Bianchi identities, 130
Big Bang, xii, 173, 176–180, 186, 202, 204

models without, 183–185
binding energy of star, 214
Birkhoff theorem, 218
black hole, xii, 134, 149, 223, 237, 248, see

horizon
0-th law, 260
acoustic model, 223
angular momentum of, 244
angular velocity, 260
available energy, 255

total, 261
candidates, 223, 224
charge of, 244
electric potential, 260
energetics, 254
energy of particles in the field of, 262–272
entropy, 262
extreme, 246
first law, 259–260
have no hair, 243
information loss, 243
irreducible energy, 262
Kerr–Newman, 243
mass formula, 261
Penrose processes, 256–257
reversible processes, 261
second law, 257–259
stationary, 236
stationary, defined, 241

275
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surface area, 248
surface gravity, 260
temperature, 262
time variability, 271
uniqueness, 242

canonical momentum, 44
Cavendish, 1
Christoffel symbols

calculation of, 43
defined, 21
of spatial metric, 59

circular orbit
co-rotating, 267
counter-rotating, 267
energy and angular momentum of, 263–266
last stable, 269

clock, 63–65
ideal, 5, 7, 39, 42, 48, 52, 63

COBE, 165
coordinates, 7–9

adapted to symmetry, 70
Boyer–Lindquist, 243
Cartesian, 34, 65, 79, 91, 160
co-moving mass-centered, 146
dimension of, 51, 134, 165
Eddington–Finkelstein, 219–221, 234
geodesic, 28, 46, 130
global geodesic, 30, 42, 43
harmonic, 156
inertial, 39, 107, 150, 192
information carried by, 51
Kerr–Newman, 245–247, 251, 257
normal, 126
null, 150
regular, 220
Schwarzschild, 212, 220
singular, 220
spherical, 14, 73, 74, 76, 90, 91, 148,

160–162
static, 57
stationary, 57, 58, 60, 147

Copernican principle, 160
cosmic censorship, 233
cosmic inflation, 204–206
cosmic microwave background radiation, 159
cosmic rest system, 165
cosmological constant, xii, 140–141

measurement, 187
cosmological model

closed, 164
eternally expanding, 178
Friedmann, 190
hyperbolic, 164

open, 164
re collapsing, 177
spatially flat, 164
without Big Bang, 180

cosmological observers, 165
cosmological principle, 159
covariant derivative

commutator of, 110
defined, 107
expression through gammas, 108
of contraction, 110
of linear combination, 109
of metric, 111
of tensor product, 109

covariant divergence
defined, 112

covariant form of equation
defined, 47

covariant Laplacean, 114
critical density, 182
curvature tensor

and second derivatives of metric, 126
and singularities, 245
defined, 24
gauge invariance of, 138
of symmetric spaces, 163
physical, 137
properties, 129
representing tidal forces, 27

curve
ballistic, 55
closed, 36
defined, 9
integral of vector field, 122
length of, 13
profile, 72
space projection of, 59
time-, light- and space-like, 47

dark energy, 174
deceleration parameter, 182
deflection of light, 2, 4, 86–89
density parameters, 182
diffeo, see diffeomorphism
diffeomorphism, 66–67

infinitesimal, 68
distance

between group orbits, 73
between neighboring observers, 54
luminosity, 187–190
radial, 229
relative to inertial frame, 40
typical, between galaxies, 168

disturbance, 134
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Eötvös, 2
early universe, 202–206
Eddington–Robertson expansion, 76–78

of Schwarzschild metric, 213
effective potential

around black hole, 254
for planets, 83
in cosmology, 177
of circular orbits, 263

Einstein convention, 12
Einstein’s equations, 127, 129

exact solutions, 172
general covariance of, 131–133
junction conditions, 217
linearized, 139, 141–143
rotationally symmetric solutions, 218
rotationally symmetric solutions of, 209
scaling behavior, 184

Einstein’s hole argument, 133
electric charge current, 97
electrodynamics, 93–99
electrostatic potential, 256
energy and momentum balance, 78–81
energy equation

of ideal fluid, 122
entropy problem, 204
entry condition, 258
equatorial plane

of Kerr–Newman space-time, 253
equivalence principle, 3–4, 27–30, 87, 94, 116,

120, 148, 249
Einstein’s, 29, 47
Galieli’s, 27
strong, 29

ergosphere, 256
generalized, 256

Euler equation, 122

field equations, 102
of matter, 104

flatness problem, 202
form variation, 103
free motion, 6, 22, 23, 33, 39, 40, 42, 48, 49

in Newton theory, 6–7
frequency

of light signal, defined, 55
Friedmann equations, 172
Friedmann-Lemaı̂tre equations, 172

gauge condition
de Donder, 156
transverse traceless, 151

gauge transformation, see diffeomorphism
in electrodynamics, 94

in linearized gravity, 136
Gauss curvature, 163
geodesic

as free motion, 43, 49
defined, 20
equation of, 20, 21
in de Sitter space, 208
in space-times with symmetries, 71
of conformally related metrics, 169
radial, 219, 229
surface generating, 226

gravitational collapse, 2
Oppenheimer–Snyder model, 224

gravitational potential, 256
gravitational radius, xii, 77, 219

of Sun and Earth, 77
gravitational wave, xii

energy carried by, 155
in linearized theory, 149–155

gravitomagnetic, xi, 59–61
field, in linearized theory, 146–149
field, of black holes, 255, 265

Green’s function, 142
group

O(4), 161
anti-de Sitter, 199
de Sitter, 195
Euclidean, of motions, 160
gauge, 133
isometry, 70
Lorentz, 162
of diffeomorphisms, 132
of symmetries of Einstein equations, 132
of symmetry, 70
orbit of, 72
Poincaré, 39
representation of Lorentz, 140
rotation, 73

homogeneity of space, 160
horizon

absolute event, 237
Cauchy, 202
cosmological, 170, 175
event, 170
event, in collapse, 232
Kerr–Newman, 247
particle, 170
problem, 202
radius, 202
Schwarzchild, 220

horizons
in de Sitter space-time, 193

Hubble constant
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defined, 168
information in, 181

Hubble diagram, 168
Hubble law, 168
Hubble time, 173
hydrostatic equilibrium, 209–211
hypesurface

defined, 237
time-, light- and space-like, 239

ideal fluid, 120–122
impact parameter, 86
index

dummy, 12
free, 12

index-carrying quantity, 11
inertial frame, 6, 7, 13, 22, 24, 27, 28, 30, 33,

37, 39–45, 47, 51, 78, 79, 93, 94, 96,
106, 120, 162, 249

dragging of, 147, 148
global, 26, 30

integral of motion, 71
Carter’s, 252
rest mass, 49

integrals of motion
in Kerr–Newman space-time, 251

interval, 40
invariant function, 126
isochrones, 187
isometry, 65–72
isotropy of space, 160

jets, 255

Killing equation, 71
Klein-Gordon equation, 105

Lagrange function, 101
of scalar field, 105
of gravitation, 125

Lagrangian density, 101
Lie derivative, 67–70
linearized theory of gravity, 136
local inertial frame

and covariant derivative, 106
defined, 28, 45
physical interpretation, 47

manifold, 9
affine connected, 11
bare points of, 133
differentiable n-, 8
embedded, 15, 238
metric, 20, 36, 45, 58

physical points of, 133
Riemannian, 20

mass
Chandrasekhar limit, 217
density of, 97
density of fluid, 120
formula, see black hole
formula, differential, 259
gravitational, 2
inertial, 2
irreducible, see black hole
limits, 215
negative, 173
of black hole, 244
of field, 102
of star, 213
of test particle, 49
total, 120, 144
under a radius, 213

Maxwell equations, 96
Maxwell theory, see electrodynamics
measuring rods, 5, 7, 39
metric, 15–16, 18, 19

anti-de Sitter, 200
around Sun, 81
auxiliary, 134–137, 139, 150
confomally related, 169
conformally deformed, 201, 207
contravariant, 18, 19, 247
de Sitter, 193
degenerate, 194, 239
dimension of, 51, 134
dynamical equation for, 125
Euclidean, 160
event horizon, 259
induced, 15, 195, 214, 239–241, 245, 247,

248
induced at hypesurface, 239
Kerr–Newman, 243–245, 273
Lorentzian, 41
measurability of, 53
Minkowski, 41–43, 54, 57, 77, 79, 140
physical, 135–137, 139
positive-definite, 20
Reissner–Nordström, 243
Robertson–Walker, 163, 167, 169, 171, 191,

193, 197
roles of, 45
rotationally symmetric, 73
Schwarzschild, 212, 218, 219, 242
signature of, 45, 46
singularity of, 220
spatial, 59
static, 57, 63, 90, 198
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stationary, 56
volume element, 95

minimal coupling, 47
multipole expansion, 144

neutron star, 217
Newton’s constant, xii, 1, 127, 146

Oppenheimer–Volkov equation, 210

parallel transport
and energy-momentum balance, 78
and Lense–Thirring effect, 147
defined, 30
dependence of path, 31
equation of, 31
of momentum, 49

Penrose diagram
of anti-de Sitter space-time, 201
of closed Friedmann model, 230
of de Sitter space-time, 194

perihelion shift, 83–85
physical parameter

defined, 44
Planck energy, 206
Planck length, 206, 262
Planck time, 206
Planck units, 206
plane wave

measurable properties, 152–155
planets

motion of, 81–85
Poisson equation, 125, 133
polarization tensor of gravitational wave, 151
pressure

of fluid, 121
principle of general covariance, 47
proper time, 42

and geometry of space-time, 64
and metric, 52
defined, 48
of asymptotic observers, 219

radar echo delay, 88–89
radial equation, 83, 148, 176, 227
recombination temperature, 202
redshift

by gravitational wave, 154–155
cosmological, 166–189
cosmological, formula of, 167
divergence in collapse, 233
gravitational, 3, 4, 33, 48, 61–64, 72, 96,

233, 268, 272
reference fluid, 51

reference frame, 5–7, 13, 22, 24, 27, 30, 39,
40, 47, 50–88

asymptotic, 80, 81, 87
cosmic, 172
general, 55
mass-centered, 80

retarded time, 219

Sagittarius A*, 223
scalar curvature, 127

in linearized theory, 139
scale factor

defined, 163
measurement of, 167
normalization, 164

scattering
of charged particles, 251
surface of last, 190, 202

scattering process, 49
simultaneity, 5

defined, 53
surfaces, 58

singularity
end of collapse, 228

sonic point, 223
space-time

anti-de Sitter, 140, 198–202
asymptotically flat, 76, 78, 79, 91, 120, 133,

241, 244
background, 140, 142, 159
Cartan–Friedrichs, 22, 23, 26–28, 36, 37
causal structure of, 48, 87, 169
curved, 87, 93, 96, 106, 111, 119, 120
de Sitter, 140, 192–198, 241
Eddington–Finkelstein, 220–222, 237, 241,

246, 248
electro-vacuum, 242
Kerr, 263
Kerr–Newman, 243, 245–249, 252
measurable structures, 65
Milne, 192
Minkowski, 30, 36, 39–44, 48, 65, 78, 88,

93, 94, 114, 120, 123, 134, 138, 140,
141, 165, 191, 240, 244, 249

Newton–Galilei, 4–7, 13, 23, 28, 30, 44
of general relativity, 46, 47
Oppenheimer–Snyder, 224, 237
regularity of, 211, 220
Robertson–Walker, 163–165, 169, 171, 188
rotationally symmetric, 72–75, 81, 91, 242
Schwarzschild, 219, 220, 267, 269, 272
static, 56, 61–63, 70, 72, 79, 81, 90, 91, 169
stationary, 55–59
symmetric, 191
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topological and differentiable structure, 51
with maximal symmetry, 202

spinors, 67, 100
stability of Minkowski space-time, 134
standard candles

Cepheid variable, 188
supernovae IA, 188

state equation
dust, 174
hot matter, 174
linear, 174
of fluid, 121

stress-energy tensor, 114–116
canonical, 114
divergence formula, 116
electrodynamics, 96–99
of ideal fluid, 121
of vacuum, 141
properties, 116

symmetric spaces
Euclidean space, 160
pseudo-sphere, 162
sphere, 160
theory, 163

synchronous, see simultaneity

tensor
algebra, 16–17
antisymmetric, 17
covariant and contravariant indices of, 15
defined, 15
Einstein, 129
mapping of, 66
measurability of components, 51
of electromagnetic field, 93
physical components of, 55
raise and lower indices of, 44
rank of, 16
Ricci, 127
symmetric, 17
tracefree, 151
type of, 15

tensor field, 16

component functions of, 100
defined, 100
invariant, 41
transformation properties of, 100

tensorial property, 16
tensors

parallel, 30
test particle, 23, 27

approximation, 257
charged, 249
motion, 47, 48

time dilation, 63
between cosmological observers, 166

transformation
active, passive, 65

turning point, 83, 177, 230, 231

variation formula, 102–104
variation principle, 99–102
variational derivative, 115
vector

defined, 10
eigen-, 89, 151, 155
field, 30
infinitesimal, 53
Killing, 70–72
length of, 54
normal to surface, 239
parallel transport of, 30
position, 74
potential, 57
Poynting, 99
space of, 20
tangential, 10
tangential to surface, 238
time-, light- and space-like, 42, 47
wave, 44

vectors
comparison at different points, 30

vierbein, 55

white dwarf, 217
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